Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS Genet ; 18(6): e1010264, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771772

RESUMO

Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.


Assuntos
Caenorhabditis elegans , Macroautofagia , Animais , Autofagossomos/metabolismo , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Macroautofagia/genética , Proteínas SNARE/metabolismo
3.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32878944

RESUMO

The membrane-shaping ability of PACSIN2 (also known as syndapin II), which is mediated by its F-BAR domain, has been shown to be essential for caveolar morphogenesis, presumably through the shaping of the caveolar neck. Caveolar membranes contain abundant cholesterol. However, the role of cholesterol in PACSIN2-mediated membrane deformation remains unclear. Here, we show that the binding of PACSIN2 to the membrane can be negatively regulated by cholesterol. We prepared reconstituted membranes based on the lipid composition of caveolae. The reconstituted membrane with cholesterol had a weaker affinity for the F-BAR domain of PACSIN2 than a membrane without cholesterol. Consistent with this, upon depletion of cholesterol from the plasma membrane, PACSIN2 localized at tubules that had caveolin-1 at their tips, suggesting that cholesterol inhibits membrane tubulation mediated by PACSIN2. The tubules induced by PACSIN2 could be representative of an intermediate of caveolae endocytosis. Consistent with this, the removal of caveolae from the plasma membrane upon cholesterol depletion was diminished in the PACSIN2-deficient cells. These data suggest that PACSIN2-mediated caveolae internalization is dependent on the amount of cholesterol, providing a mechanism for cholesterol-dependent regulation of caveolae.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cavéolas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cavéolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Endocitose
4.
Physiol Rev ; 94(4): 1219-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25287863

RESUMO

All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.


Assuntos
Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Animais , Membrana Celular/química , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Metabolismo dos Lipídeos , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfolipídeos/química
5.
Biochem Biophys Res Commun ; 571: 145-151, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34325130

RESUMO

Podosomes are actin-rich adhesion structures formed in a variety of cell types, such as monocytic cells or cancer cells, to facilitate attachment to and degradation of the extracellular matrix (ECM). Previous studies showed that dynamin 2, a large GTPase involved in membrane remodeling and actin organization, is required for podosome function. However, precise roles of dynamin 2 at the podosomes remain to be elucidated. In this study, we identified a BAR (Bin-Amphiphysin-Rvs167) domain protein pacsin 2 as a functional partner of dynamin 2 at podosomes. Dynamin 2 and pacsin 2 interact and co-localize to podosomes in Src-transformed NIH 3T3 (NIH-Src) cells. RNAi of either dynamin 2 or pacsin 2 in NIH-Src cells inhibited podosome formation and maturation, suggesting essential and related roles at podosomes. Consistently, RNAi of pacsin 2 prevented dynamin 2 localization to podosomes, and reciprocal RNAi of dynamin 2 prevented pacsin 2 localization to podosomes. Taking these results together, we conclude that dynamin 2 and pacsin 2 co-operatively regulate organization of podosomes in NIH-Src cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/metabolismo , Podossomos/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos
6.
Genes Cells ; 25(3): 187-196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31976592

RESUMO

Membrane lipids are essential participants in cellular events, but only a small number of lipid-interacting proteins have been characterized. Taking advantage of the small genome (~270 genes) of the vaccinia virus, we screened for soluble lipid-binding proteins and found 27 proteins to be soluble after expression in Escherichia coli. Among them, 4 proteins were found to strongly bind to the total bovine brain lipid extract (Folch I fraction) that contained large amounts of phosphatidylserine in vitro. Out of the 4 proteins, 3 were unique proteins to viruses. Another protein, K1, solely contained an ankyrin repeat domain (ARD). ARD is conserved in large numbers of proteins in bacteria, archaea, eukaryotes and viruses, suggesting the possibilities of the membrane binding of ARDs in varieties of proteins. Furthermore, K1 deformed the lipid membrane dependently on the charged lipids. The tubulation and membrane binding was enhanced with increased negative membrane charge from phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ). The basic amino acid residues in the ARD were essential for membrane deformation, suggesting electrostatic interactions between K1 and the membrane for membrane deformation.


Assuntos
Lipídeos de Membrana/química , Proteínas Virais/química , Repetição de Anquirina , Sítios de Ligação , Células HeLa , Humanos , Eletricidade Estática , Células Tumorais Cultivadas
7.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801866

RESUMO

Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. HCV is highly dependent on cellular machinery for viral propagation. Using protein microarray analysis, we previously identified 90 cellular proteins as nonstructural 5A (NS5A) interacting partners. Of these, protein kinase C and casein kinase substrate in neurons protein 2 (PACSIN2) was selected for further study. PACSIN2 belongs to the PACSIN family, which is involved in the formation of caveolae. Protein interaction between NS5A and PACSIN2 was confirmed by pulldown assay and further verified by both coimmunoprecipitation and immunofluorescence assays. We showed that PACSIN2 interacted with domain I of NS5A and the Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) region of PACSIN2. Interestingly, NS5A specifically attenuated protein kinase C alpha (PKCα)-mediated phosphorylation of PACSIN2 at serine 313 by interrupting PACSIN2 and PKCα interaction. In fact, mutation of the serine 313 to alanine (S313A) of PACSIN2 increased protein interaction with NS5A. Silencing of PACSIN2 decreased both viral RNA and protein expression levels of HCV. Ectopic expression of the small interfering RNA (siRNA)-resistant PACSIN2 recovered the viral infectivity, suggesting that PACSIN2 was specifically required for HCV propagation. PACSIN2 was involved in viral assembly without affecting other steps of the HCV life cycle. Indeed, overexpression of PACSIN2 promoted NS5A and core protein (core) interaction. We further showed that inhibition of PKCα increased NS5A and core interaction, suggesting that phosphorylation of PACSIN2 might influence HCV assembly. Moreover, PACSIN2 was required for lipid droplet formation via modulating extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Taken together, these data indicate that HCV modulates PACSIN2 via NS5A to promote virion assembly.IMPORTANCE PACSIN2 is a lipid-binding protein that triggers the tubulation of the phosphatidic acid-containing membranes. The functional involvement of PACSIN2 in the virus life cycle has not yet been demonstrated. We showed that phosphorylation of PACSIN2 displayed a negative effect on NS5A and core interaction. The most significant finding is that NS5A prevents PKCα from binding to PACSIN2. Therefore, the phosphorylation level of PACSIN2 is decreased in HCV-infected cells. We showed that HCV NS5A interrupted PKCα-mediated PACSIN2 phosphorylation at serine 313, thereby promoting NS5A-PACSIN2 interaction. We further demonstrated that PACSIN2 modulated lipid droplet formation through ERK1/2 phosphorylation. These data provide evidence that PACSIN2 is a proviral cellular factor required for viral propagation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepacivirus/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Hepatite C/virologia , Humanos , Imunoprecipitação , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno , RNA Viral/metabolismo , Replicação Viral/fisiologia
8.
J Biol Chem ; 294(21): 8412-8423, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30944173

RESUMO

The innate immune system plays an essential role in initial recognition of pathogen infection by producing inflammatory cytokines and type I interferons. cGAS is a cytoplasmic sensor for DNA derived from DNA viruses. cGAS binding with DNA induces the production of cGAMP, a second messenger that associates with STING in endoplasmic reticulum (ER). STING changes its cellular distribution from ER to perinuclear Golgi, where it activates the protein kinase TBK1 that catalyzes the phosphorylation of IRF3. Here we found that STING trafficking is regulated by myotubularin-related protein (MTMR) 3 and MTMR4, members of protein tyrosine phosphatases that dephosphorylate 3' position in phosphatidylinositol (PtdIns) and generate PtdIns5P from PtdIns3,5P2 and PtdIns from PtdIns3P. We established MTMR3 and MTMR4 double knockout (DKO) RAW264.7 macrophage cells and found that they exhibited increased type I interferon production after interferon-stimulatory DNA (ISD) stimulation and herpes simplex virus 1 infection concomitant with enhanced IRF3 phosphorylation. In DKO cells, STING rapidly trafficked from ER to Golgi after ISD stimulation. Notably, DKO cells exhibited enlarged cytosolic puncta positive for PtdIns3P and STING was aberrantly accumulated in this puncta. Taken together, these results suggest that MTMR3 and MTMR4 regulate the production of PtdIns3P, which plays a critical role in suppressing DNA-mediated innate immune responses via modulating STING trafficking.


Assuntos
DNA Viral/imunologia , Herpesvirus Humano 1/imunologia , Imunidade Inata , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Fosfatos de Fosfatidilinositol/imunologia , Proteínas Tirosina Fosfatases não Receptoras/imunologia , Animais , DNA Viral/genética , Herpesvirus Humano 1/genética , Proteínas de Membrana/genética , Camundongos , Fosfatos de Fosfatidilinositol/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Células RAW 264.7
9.
Biochem Soc Trans ; 48(3): 837-851, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32597479

RESUMO

Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Animais , Membrana Celular/química , Ácidos Graxos/análise , Glicerofosfolipídeos/química , Mamíferos
10.
Biochem Soc Trans ; 46(2): 379-389, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29540508

RESUMO

Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Lipídeos de Membrana/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Polimerização , Domínios Proteicos
11.
FASEB J ; 31(9): 3978-3990, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28550045

RESUMO

Nephrin is a core component of podocyte (glomerular epithelial cell) slit diaphragm and is required for kidney ultrafiltration. Down-regulation or mislocalization of nephrin has been observed in diabetic kidney disease (DKD), characterized by albuminuria. Here, we investigate the role of protein kinase C and casein kinase 2 substrate in neurons 2 (PACSIN2), a regulator of endocytosis and recycling, in the trafficking of nephrin and development of DKD. We observe that PACSIN2 is up-regulated and nephrin mislocalized in podocytes of obese Zucker diabetic fatty (ZDF) rats that have altered renal function. In cultured podocytes, PACSIN2 and nephrin colocalize and interact. We show that nephrin is endocytosed in PACSIN2-positive membrane regions and that PACSIN2 overexpression increases both nephrin endocytosis and recycling. We identify rabenosyn-5, which is involved in early endosome maturation and endosomal sorting, as a novel interaction partner of PACSIN2. Interestingly, rabenosyn-5 expression is increased in podocytes in obese ZDF rats, and, in vitro, its overexpression enhances the association of PACSIN2 and nephrin. We also show that palmitate, which is elevated in diabetes, enhances this association. Collectively, PACSIN2 is up-regulated and nephrin is abnormally localized in podocytes of diabetic ZDF rats. In vitro, PACSIN2 enhances nephrin turnover apparently via a mechanism involving rabenosyn-5. The data suggest that elevated PACSIN2 expression accelerates nephrin trafficking and associates with albuminuria.-Dumont, V., Tolvanen, T. A., Kuusela, S., Wang, H., Nyman, T. A., Lindfors, S., Tienari, J., Nisen, H., Suetsugu, S., Plomann, M., Kawachi, H., Lehtonen, S. PACSIN2 accelerates nephrin trafficking and is up-regulated in diabetic kidney disease.


Assuntos
Proteínas de Transporte/metabolismo , Nefropatias Diabéticas/metabolismo , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas do Citoesqueleto , Diabetes Mellitus , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Obesidade , Transporte Proteico/fisiologia , Proteínas/genética , Ratos Zucker , Regulação para Cima , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
J Cell Sci ; 128(15): 2766-80, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092940

RESUMO

PACSIN2, a membrane-sculpting BAR domain protein, localizes to caveolae. Here, we found that protein kinase C (PKC) phosphorylates PACSIN2 at serine 313, thereby decreasing its membrane binding and tubulation capacities. Concomitantly, phosphorylation decreased the time span for which caveolae could be tracked at the plasma membrane (the 'tracking duration'). Analyses of the phospho-mimetic S313E mutant suggested that PACSIN2 phosphorylation was sufficient to reduce caveolar-tracking durations. Both hypotonic treatment and isotonic drug-induced PKC activation increased PACSIN2 phosphorylation at serine 313 and shortened caveolar-tracking durations. Caveolar-tracking durations were also reduced upon the expression of other membrane-binding-deficient PACSIN2 mutants or upon RNA interference (RNAi)-mediated PACSIN2 depletion, pointing to a role for PACSIN2 levels in modulating the lifetime of caveolae. Interestingly, the decrease in membrane-bound PACSIN2 was inversely correlated with the recruitment and activity of dynamin 2, a GTPase that mediates membrane scission. Furthermore, expression of EHD2, which stabilizes caveolae and binds to PACSIN2, restored the tracking durations of cells with reduced PACSIN2 levels. These findings suggest that the PACSIN2 phosphorylation decreases its membrane-binding activity, thereby decreasing its stabilizing effect on caveolae and triggering dynamin-mediated removal of caveolae.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/biossíntese , Cavéolas/metabolismo , Membrana Celular/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Dinamina II , Dinaminas/metabolismo , Células Endoteliais/fisiologia , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
13.
Cell Struct Funct ; 41(1): 1-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26657738

RESUMO

Bin-Amphiphysin-Rvs161/167 (BAR) domains mold lipid bilayer membranes into tubules, by forming a spiral polymer on the membrane. Most BAR domains are thought to be involved in forming membrane invaginations through their concave membrane binding surfaces, whereas some members have convex membrane binding surfaces, and thereby mold membranes into protrusions. The BAR domains with a convex surface form a subtype called the inverse BAR (I-BAR) domain or IRSp53-MIM-homology domain (IMD). Although the mammalian I-BAR domains have been studied, those from other organisms remain elusive. Here, we found putative I-BAR domains in Fungi and animal-like unicellular organisms. The fungal protein containing the putative I-BAR-domain is known as Ivy1p in yeast, and is reportedly localized in the vacuole. The phylogenetic analysis of the I-BAR domains revealed that the fungal I-BAR-domain containing proteins comprise a distinct group from those containing IRSp53 or MIM. Importantly, Ivy1p formed a polymer with a diameter of approximately 20 nm in vitro, without a lipid membrane. The filaments were formed at neutral pH, but disassembled when pH was reverted to basic. Moreover, Ivy1p and the I-BAR domain expressed in mammalian HeLa cells was localized at a vacuole-like structure as filaments as revealed by super-resolved microscopy. These data indicate the pH-sensitive polymer forming ability and the functional conservation of Ivy1p in eukaryotic cells.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
14.
J Cell Sci ; 127(Pt 9): 2040-52, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24610943

RESUMO

Cdc42 is a key regulator of dynamic actin organization. However, little is known about how Cdc42-dependent actin regulation influences steady-state actin structures in differentiated epithelia. We employed inner ear hair-cell-specific conditional knockout to analyze the role of Cdc42 in hair cells possessing highly elaborate stable actin protrusions (stereocilia). Hair cells of Atoh1-Cre;Cdc42(flox/flox) mice developed normally but progressively degenerated after maturation, resulting in progressive hearing loss particularly at high frequencies. Cochlear hair cell degeneration was more robust in inner hair cells than in outer hair cells, and began as stereocilia fusion and depletion, accompanied by a thinning and waving circumferential actin belt at apical junctional complexes (AJCs). Adenovirus-encoded GFP-Cdc42 expression in hair cells and fluorescence resonance energy transfer (FRET) imaging of hair cells from transgenic mice expressing a Cdc42-FRET biosensor indicated Cdc42 presence and activation at stereociliary membranes and AJCs in cochlear hair cells. Cdc42-knockdown in MDCK cells produced phenotypes similar to those of Cdc42-deleted hair cells, including abnormal microvilli and disrupted AJCs, and downregulated actin turnover represented by enhanced levels of phosphorylated cofilin. Thus, Cdc42 influenced the maintenance of stable actin structures through elaborate tuning of actin turnover, and maintained function and viability of cochlear hair cells.


Assuntos
Células Ciliadas Auditivas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Técnicas Biossensoriais , Cóclea/citologia , Cóclea/metabolismo , Cães , Transferência Ressonante de Energia de Fluorescência , Humanos , Imuno-Histoquímica , Hibridização In Situ , Células Madin Darby de Rim Canino , Camundongos , Microscopia Eletroquímica de Varredura , Microscopia Eletrônica de Transmissão , Técnicas de Cultura de Órgãos/métodos , Proteína cdc42 de Ligação ao GTP/genética
15.
Semin Cell Dev Biol ; 24(4): 267-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23380397

RESUMO

Nucleation promoting factors (NPFs) activate the Arp2/3 complex to produce branched actin filaments. Branched actin filaments are observed in most organelles, and specific NPFs, such as WASP, N-WASP, WAVEs, WASH, and WHAMM, exist for each organelle. Interestingly, Arp2/3 and NPFs are both inactive by themselves, and thus require activation. The exposure of the Arp2/3 activating region, the VCA fragment, is recognized to be a key event in the activation of the NPFs. Together, small GTPase binding, phosphorylation, SH3 binding, and membrane binding promote VCA exposure synergistically. The increase in the local concentration of NPF by multimerization is thought to occur with the combination of such activators, to maximally activate the NPF and confine the region of actin polymerization. The mechanism of uni-directional filament extension beneath the membrane also is discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Regulação Alostérica , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Ligação Proteica , Multimerização Proteica
16.
J Cell Sci ; 126(Pt 3): 745-55, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264741

RESUMO

The crosstalk between spatial adhesion signals and temporal soluble signals is key in regulating cellular responses such as cell migration. Here we show that soluble growth factors enhance integrin signaling through Akt phosphorylation of FAK at Ser695 and Thr700. PDGF treatment or overexpression of active Akt1 in fibroblasts increased autophosphorylation of FAK at Tyr397, an essential event for integrin turnover and cell migration. Phosphorylation-defective mutants of FAK (S695A and T700A) underwent autophosphorylation at Tyr397 and promoted cell migration in response to the integrin ligand fibronectin, but importantly, not in response to PDGF. This study has unveiled a novel function of Akt as an 'ignition kinase' of FAK in growth factor signaling and may shed light on the mechanism by which growth factors regulate integrin signaling.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células COS , Movimento Celular/genética , Chlorocebus aethiops , Fibronectinas/metabolismo , Adesões Focais/genética , Integrinas/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Receptor Cross-Talk , Transdução de Sinais/genética , Transgenes/genética
17.
Nucleic Acids Res ; 41(13): 6729-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23649835

RESUMO

Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNA(Sec) from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNA(Sec) assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNA(Sec)s, A. aeolicus tRNA(Sec) has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNA(Sec) in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNA(Sec). Similar interactions exist in the reported tRNA(Ser) and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNA(Sec) in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNA(Sec) to enter the SerRS catalytic site.


Assuntos
RNA Bacteriano/química , RNA de Transferência Aminoácido-Específico/química , Serina-tRNA Ligase/química , Euryarchaeota/enzimologia , Modelos Moleculares , Conformação de Ácido Nucleico , Serina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência
18.
J Extracell Biol ; 3(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38405579

RESUMO

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

19.
J Cell Sci ; 124(Pt 12): 2032-40, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21610094

RESUMO

Caveolae are flask-shaped invaginations of the plasma membrane that are associated with tumor formation, pathogen entry and muscular dystrophy, through the regulation of lipids, signal transduction and endocytosis. Caveolae are generated by the fusion of caveolin-1-containing vesicles with the plasma membrane, which then participate in endocytosis via dynamin. Proteins containing membrane-sculpting F-BAR (or EFC) domains organize the membrane in clathrin-mediated endocytosis. Here, we show that the F-BAR protein PACSIN2 sculpts the plasma membrane of the caveola. The PACSIN2 F-BAR domain interacts directly with caveolin-1 by unmasking autoinhibition of PACSIN2. Furthermore, the membrane invaginations induced by the PACSIN2 F-BAR domain contained caveolin-1. Knockdown of PACSIN2 resulted in abnormal morphology of caveolin-1-associated plasma membranes, presumably as a result of decreased recruitment of dynamin-2 to caveolin-1. These results indicate that PACSIN2 mediates membrane sculpting by caveolin-1 in caveola morphology and recruits dynamin-2 for caveola fission.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cavéolas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Caveolina 1/metabolismo , Dinamina II/metabolismo , Endocitose/fisiologia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transdução de Sinais
20.
Membranes (Basel) ; 13(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132908

RESUMO

Plasma and intracellular membranes are characterized by different lipid compositions that enable proteins to localize to distinct subcellular compartments [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA