Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 26(26): 34259-34265, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650851

RESUMO

We developed a HORN-8 system that generates computer-generated holograms at a high speed. The cluster system employed eight HORN-8 boards and achieved a level of performance that was 1,000 times faster than that of a PC. From a point-cloud model comprising 65,536 (216) points, the proposed cluster system can update a 2-million-pixel (1,920 × 1,080) hologram at 60 frames per second. 65,536 (216) is the internal memory size of the HORN-8 hardware. However, the HORN-8 system can calculate a hologram at a high speed even if the number of point-cloud sources exceeds 65,536 (216). Herein, we spatiotemporally divided a point-cloud model comprising ~400,000 points and succeeded in reproducing the video-holography. We demonstrated the performance of the special-purpose computer for electroholography using HORN-8 hardware that does not require a large internal memory when the calculation speed is high.

2.
Opt Express ; 26(20): 26722-26733, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469753

RESUMO

Electro-holography is a promising display technology that can reconstruct a photorealistic three-dimensional (3D) movie; however, it is yet to be realized practically owing to the need for enormous calculation power. A special-purpose computer for electro-holography, namely HORN, has been studied for over 20 years as a means to solve this problem. The latest version of HORN, HORN-8, was developed using field programmable gate array (FPGA) technology. Initially, a circuit for amplitude-type electro-holography was implemented in HORN-8; however, implementation of phase-type electro-holography has remained an issue. In this paper, the development of new version of HORN-8 and its cluster system, which achieved a real-time reconstruction of a 3D movie with point clouds comprised of 32,000 points for phase-type electro-holography, was reported.

3.
Appl Opt ; 55(15): 4159-65, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27411145

RESUMO

We propose two calculation methods of generating color computer-generated holograms (CGHs) with the random phase-free method and color space conversion in order to improve the image quality and accelerate the calculation. The random phase-free method improves the image quality in monochrome CGH, but it is not performed in color CGH. We first aimed to improve the image quality of color CGH using the random phase-free method and then to accelerate the color CGH generation with a combination of the random phase-free method and color space conversion method, which accelerates the color CGH calculation due to down-sampling of the color components converted by color space conversion. To overcome the problem of image quality degradation that occurs due to the down-sampling of random phases, the combination of the random phase-free method and color space conversion method improves the quality of reconstructed images and accelerates the color CGH calculation. We demonstrated the effectiveness of the proposed method in simulation, and in this paper discuss its application to lensless zoomable holographic projection.

4.
Opt Express ; 23(13): 17269-74, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191736

RESUMO

We propose a random phase-free kinoform for large objects. When not using the random phase in kinoform calculation, the reconstructed images from the kinoform are heavy degraded, like edge-only preserved images. In addition, the kinoform cannot record an entire object that exceeds the kinoform size because the object light does not widely spread. In order to avoid this degradation and to widely spread the object light, the random phase is applied to the kinoform calculation; however, the reconstructed image is contaminated by speckle noise. In this paper, we overcome this problem by using our random phase-free method and error diffusion method.

5.
Opt Express ; 17(16): 13895-903, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654797

RESUMO

We developed the HORN-6 special-purpose computer for holography. We designed and constructed the HORN-6 board to handle an object image composed of one million points and constructed a cluster system composed of 16 HORN-6 boards. Using this HORN-6 cluster system, we succeeded in creating a computer-generated hologram of a three-dimensional image composed of 1,000,000 points at a rate of 1 frame per second, and a computer-generated hologram of an image composed of 100,000 points at a rate of 10 frames per second, which is near video rate, when the size of a computer-generated hologram is 1,920 x 1,080. The calculation speed is approximately 4,600 times faster than that of a personal computer with an Intel 3.4-GHz Pentium 4 CPU.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Holografia/instrumentação , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Microcomputadores , Processamento de Sinais Assistido por Computador/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
6.
Opt Express ; 14(2): 603-8, 2006 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19503377

RESUMO

We have applied the graphics processing unit (GPU) to computer generated holograms (CGH) to overcome the high computational cost of CGH and have compared the speed of a GPU implementation to a standard CPU implementation. The calculation speed of a GPU (GeForce 6600, nVIDIA) was found to be about 47 times faster than that of a personal computer with a Pentium 4 processor. Our system can realize real-time reconstruction of a 64-point 3-D object at video rate using a liquid-crystal display of resolution 800x600.

7.
Opt Express ; 13(6): 1923-32, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19495074

RESUMO

In electroholography, a real-time reconstruction is one of the grand challenges. To realize it, we developed a parallelized high performance computing board for computer-generated hologram, named HORN-5 board, where four large-scale field programmable gate array chips were mounted. The number of circuits for hologram calculation implemented to the board was 1,408. The board calculated a hologram at higher speed by 360 times than a personal computer with Pentium4 processor. A personal computer connected with four HORN-5 boards calculated a hologram of 1,408 x 1,050 made from a three-dimensional object consisting of 10,000 points at 0.0023 s. In other words, beyond at video rate (30 frames / s), it realized a real-time reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA