Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 49(21): 12234-12251, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761263

RESUMO

Telomeres are intrinsically difficult-to-replicate region of eukaryotic chromosomes. Telomeric repeat binding factor 2 (TRF2) binds to origin recognition complex (ORC) to facilitate the loading of ORC and the replicative helicase MCM complex onto DNA at telomeres. However, the biological significance of the TRF2-ORC interaction for telomere maintenance remains largely elusive. Here, we employed a TRF2 mutant with mutations in two acidic acid residues (E111A and E112A) that inhibited the TRF2-ORC interaction in human cells. The TRF2 mutant was impaired in ORC recruitment to telomeres and showed increased replication stress-associated telomeric DNA damage and telomere instability. Furthermore, overexpression of an ORC1 fragment (amino acids 244-511), which competitively inhibited the TRF2-ORC interaction, increased telomeric DNA damage under replication stress conditions. Taken together, these findings suggest that TRF2-mediated ORC recruitment contributes to the suppression of telomere instability.


Assuntos
Replicação do DNA/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral , Dano ao DNA , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
2.
J Cell Sci ; 131(15)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29991511

RESUMO

Glutamate-rich WD40 repeat-containing 1 (GRWD1) is a Cdt1-binding protein that promotes mini-chromosome maintenance (MCM) loading through its histone chaperone activity. GRWD1 acts as a tumor-promoting factor by downregulating p53 (also known as TP53) via the RPL11-MDM2-p53 axis. Here, we identified GRWD1-interacting proteins using a proteomics approach and showed that GRWD1 interacts with various proteins involved in transcription, translation, DNA replication and repair, chromatin organization, and ubiquitin-mediated proteolysis. We focused on the ribosomal protein ribosomal protein L23 (RPL23), which positively regulates nucleolar stress responses through MDM2 binding and inhibition, thereby functioning as a tumor suppressor. Overexpression of GRWD1 decreased RPL23 protein levels and stability; this effect was restored upon treatment with the proteasome inhibitor MG132. EDD (also known as UBR5), an E3 ubiquitin ligase that interacts with GRWD1, also downregulated RPL23, and the decrease was further enhanced by co-expression of GRWD1. Conversely, siRNA-mediated GRWD1 knockdown upregulated RPL23. Co-expression of GRWD1 and EDD promoted RPL23 ubiquitylation. These data suggest that GRWD1 acts together with EDD to negatively regulate RPL23 via the ubiquitin-proteasome system. GRWD1 expression reversed the RPL23-mediated inhibition of anchorage-independent growth in cancer cells. Our data suggest that GRWD1-induced RPL23 proteolysis plays a role in downregulation of p53 and tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ribossômicas/metabolismo , Células HEK293 , Humanos , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
3.
Nucleic Acids Res ; 46(13): 6683-6696, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29893900

RESUMO

In metazoan cells, only a limited number of mini chromosome maintenance (MCM) complexes are fired during S phase, while the majority remain dormant. Several methods have been used to map replication origins, but such methods cannot identify dormant origins. Herein, we determined MCM7-binding sites in human cells using ChIP-Seq, classified them into firing and dormant origins using origin data and analysed their association with various chromatin signatures. Firing origins, but not dormant origins, were well correlated with open chromatin regions and were enriched upstream of transcription start sites (TSSs) of transcribed genes. Aggregation plots of MCM7 signals revealed minimal difference in the efficacy of MCM loading between firing and dormant origins. We also analysed common fragile sites (CFSs) and found a low density of origins at these sites. Nevertheless, firing origins were enriched upstream of the TSSs. Based on the results, we propose a model in which excessive MCMs are actively loaded in a genome-wide manner, irrespective of chromatin status, but only a fraction are passively fired in chromatin areas with an accessible open structure, such as regions upstream of TSSs of transcribed genes. This plasticity in the specification of replication origins may minimize collisions between replication and transcription.


Assuntos
Origem de Replicação , Composição de Bases , Sítios de Ligação , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Sítios Frágeis do Cromossomo , DNA/química , Genoma Humano , Células HeLa , Humanos , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
4.
Cancer Sci ; 110(3): 1044-1053, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648820

RESUMO

MCM8 and MCM9 are paralogues of the MCM2-7 eukaryotic DNA replication helicase proteins and play a crucial role in a homologous recombination-mediated repair process to resolve replication stress by fork stalling. Thus, deficiency of MCM8-9 sensitizes cells to replication stress caused, for example, by platinum compounds that induce interstrand cross-links. It is suggested that cancer cells undergo more replication stress than normal cells due to hyperstimulation of growth. Therefore, it is possible that inhibiting MCM8-9 selectively hypersensitizes cancer cells to platinum compounds and poly(ADP-ribose) polymerase inhibitors, both of which hamper replication fork progression. Here, we inhibited MCM8-9 in transformed and nontransformed cells and examined their sensitivity to cisplatin and olaparib. We found that knockout of MCM9 or knockdown of MCM8 selectively hypersensitized transformed cells to cisplatin and olaparib. In agreement with reported findings, RAS- and human papilloma virus type 16 E7-mediated transformation of human fibroblasts increased replication stress, as indicated by induction of multiple DNA damage responses (including formation of Rad51 foci). Such replication stress induced by oncogenes was further increased by knockdown of MCM8, providing a rationale for cancer-specific hypersensitization to cisplatin and olaparib. Finally, we showed that knocking out MCM9 increased the sensitivity of HCT116 xenograft tumors to cisplatin. Taken together, the data suggest that conceptual MCM8-9 inhibitors will be powerful cancer-specific chemosensitizers for platinum compounds and poly(ADP-ribose) polymerase inhibitors, thereby opening new avenues to the design of novel cancer chemotherapeutic strategies.


Assuntos
Cisplatino/farmacologia , Proteínas de Manutenção de Minicromossomo/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HCT116 , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Compostos Organoplatínicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos
5.
EMBO Rep ; 18(1): 123-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856536

RESUMO

The ribosomal protein L11 (RPL11) binds and inhibits the MDM2 ubiquitin ligase, thereby promoting p53 stability. Thus, RPL11 acts as a tumor suppressor. Here, we show that GRWD1 (glutamate-rich WD40 repeat containing 1) physically and functionally interacts with RPL11. GRWD1 is localized to nucleoli and is released into the nucleoplasm upon nucleolar stress. Silencing of GRWD1 increases p53 induction by nucleolar stress, whereas overexpression of GRWD1 reduces p53 induction. Furthermore, GRWD1 overexpression competitively inhibits the RPL11-MDM2 interaction and alleviates RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. These effects are mediated by the N-terminal region of GRWD1, including the acidic domain. Finally, we show that GRWD1 overexpression in combination with HPV16 E7 and activated KRAS confers anchorage-independent growth and tumorigenic capacity on normal human fibroblasts. Consistent with this, GRWD1 overexpression is associated with poor prognosis in cancer patients. Taken together, our results suggest that GRWD1 is a novel negative regulator of p53 and a potential oncogene.


Assuntos
Proteínas de Transporte/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Animais , Proteínas de Transporte/química , Linhagem Celular Tumoral , Transformação Celular Viral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Inativação Gênica , Genes ras , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 191-201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836746

RESUMO

Telomeres are specialized chromatin structures that prevent the degradation and instability of the ends of linear chromosomes. While telomerase maintains long stretches of the telomeric repeat, the majority of telomeric DNA is duplicated by conventional DNA replication. A fundamental step in eukaryotic DNA replication involves chromatin binding of the origin recognition complex (ORC). In human cells, telomeric repeat binding factor 2 (TRF2) is thought to play a role in the recruitment of ORC onto telomeres. To better understand the mechanism of TRF2-mediated ORC recruitment, we utilized a lacO-LacI protein tethering system in U2OS cells and found that ectopically targeted TRF2, but not TRF1, can recruit ORC onto the lacO array. We further found that the TRF homology (TRFH) dimerization domain of TRF2, but not its mutant defective in dimerization, is sufficient for ORC and minichromosome maintenance (MCM) recruitment. Mutations impairing the dimerization also compromised ORC recruitment by full-length TRF2. Similar results were obtained using immunoprecipitation and GST pull-down assays. Together, these results suggest that dimerized TRF2 recruits ORC and stimulates pre-replication complex (pre-RC) formation at telomeres through the TRFH domain.


Assuntos
Cromatina/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Repressores Lac/genética , Repressores Lac/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Domínios Proteicos , Multimerização Proteica , Transdução de Sinais , Telômero/ultraestrutura , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética
7.
Biochim Biophys Acta ; 1863(11): 2739-2748, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27552915

RESUMO

GRWD1 was previously identified as a novel Cdt1-binding protein that possesses histone-binding and nucleosome assembly activities and promotes MCM loading, probably by maintaining chromatin openness at replication origins. However, the molecular mechanisms underlying these activities remain unknown. We prepared reconstituted mononucleosomes from recombinant histones and a DNA fragment containing a nucleosome positioning sequence, and investigated the effects of GRWD1 on them. GRWD1 could disassemble these preformed mononucleosomes in vitro in an ATP-independent manner. Thus, our data suggest that GRWD1 facilitates removal of H2A-H2B dimers from nucleosomes, resulting in formation of hexasomes. The activity was compromised by deletion of the acidic domain, which is required for efficient histone binding. In contrast, nucleosome assembly activity of GRWD1 was not affected by deletion of the acidic domain. In HeLa cells, the acidic domain of GRWD1 was necessary to maintain chromatin openness and promote MCM loading at replication origins. Taken together, our results suggest that GRWD1 promotes chromatin fluidity by influencing nucleosome structures, e.g., by transient eviction of H2A-H2B, and thereby promotes efficient MCM loading at replication origins.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , DNA/química , DNA/genética , Células HeLa , Histonas/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Origem de Replicação , Transdução de Sinais , Relação Estrutura-Atividade , Transfecção
8.
Nucleic Acids Res ; 43(12): 5898-911, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25990725

RESUMO

Efficient pre-replication complex (pre-RC) formation on chromatin templates is crucial for the maintenance of genome integrity. However, the regulation of chromatin dynamics during this process has remained elusive. We found that a conserved protein, GRWD1 (glutamate-rich WD40 repeat containing 1), binds to two representative replication origins specifically during G1 phase in a CDC6- and Cdt1-dependent manner, and that depletion of GRWD1 reduces loading of MCM but not CDC6 and Cdt1. Furthermore, chromatin immunoprecipitation coupled with high-throughput sequencing (Seq) revealed significant genome-wide co-localization of GRWD1 with CDC6. We found that GRWD1 has histone-binding activity. To investigate the effect of GRWD1 on chromatin architecture, we used formaldehyde-assisted isolation of regulatory elements (FAIRE)-seq or FAIRE-quantitative PCR analyses, and the results suggest that GRWD1 regulates chromatin openness at specific chromatin locations. Taken together, these findings suggest that GRWD1 may be a novel histone-binding protein that regulates chromatin dynamics and MCM loading at replication origins.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação , Proteínas de Transporte/análise , Proteínas de Transporte/fisiologia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/química , Cromatina/química , Replicação do DNA , Células HEK293 , Células HeLa , Humanos , Lamina Tipo B/genética , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Proteínas Nucleares/metabolismo
9.
Adv Exp Med Biol ; 1042: 61-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29357053

RESUMO

DNA replication is a fundamental process required for the accurate and timely duplication of chromosomes. During late mitosis to G1 phase, the MCM2-7 complex is loaded onto chromatin in a manner dependent on ORC, CDC6, and Cdt1, and chromatin becomes licensed for replication. Although every eukaryotic organism shares common features in replication control, there are also some differences among species. For example, in higher eukaryotic cells including human cells, no strict sequence specificity has been observed for replication origins, unlike budding yeast or bacterial replication origins. Therefore, elements other than beyond DNA sequences are important for regulating replication. For example, the stability and precise positioning of nucleosomes affects replication control. However, little is known about how nucleosome structure is regulated when replication licensing occurs. During the last decade, histone acetylation enzyme HBO1, chromatin remodeler SNF2H, and histone chaperone GRWD1 have been identified as chromatin-handling factors involved in the promotion of replication licensing. In this review, we discuss how the rearrangement of nucleosome formation by these factors affects replication licensing.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Replicação do DNA/fisiologia , Células Eucarióticas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Células Eucarióticas/fisiologia , Fase G1/genética , Histonas/metabolismo , Humanos , Mamíferos/genética
10.
Biochim Biophys Acta ; 1850(9): 1676-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25960391

RESUMO

BACKGROUND: The mitotic spindles are among the most successful targets of anti-cancer chemotherapy, and they still hold promise as targets for novel drugs. The anti-mitotic drugs in current clinical use, including taxanes, epothilones, vinca alkaloids, and halichondrins, are all microtubule-targeting agents. Although these drugs are effective for cancer chemotherapy, they have some critical problems; e.g., neurotoxicity caused by damage to neuronal microtubules, as well as innate or acquired drug resistance. To overcome these problems, a great deal of effort has been expended on development of novel anti-mitotics. METHODS: We identified novel microtubule-targeting agents with carbazole and benzohydrazide structures: N'-[(9-ethyl-9H-carbazol-3-yl)methylene]-2-methylbenzohydrazide (code number HND-007) and its related compounds. We investigated their activities against cancer cells using various methods including cell growth assay, immunofluorescence analysis, cell cycle analysis, tubulin polymerization assay, and tumor inhibition assay in nude mice. RESULTS: HND-007 inhibits tubulin polymerization in vitro and blocks microtubule formation and centrosome separation in cancer cells. Consequently, it suppresses the growth of various cancer cell lines, with IC50 values in the range 1.3-4.6µM. In addition, HND-007 can inhibit the growth of taxane-resistant cancer cells that overexpress P-glycoprotein. Finally, HND-007 can inhibit HeLa cell tumor growth in nude mice. CONCLUSIONS AND GENERAL SIGNIFICANCE: Taken together, these findings suggest that HND-007 is a promising lead compound for development of novel anti-mitotic, anti-microtubule chemotherapeutic agents.


Assuntos
Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Microtúbulos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Moduladores de Tubulina/farmacologia
11.
J Cell Sci ; 125(Pt 16): 3870-82, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573825

RESUMO

Although nuclear actin and Arps (actin-related proteins) are often identified as components of multi-protein chromatin-modifying enzyme complexes, such as chromatin remodeling and histone acetyltransferase (HAT) complexes, their molecular functions still remain largely elusive. Here, we investigated the role of human Arp4 (BAF53, also known as actin-like protein 6A) in Brg1-containing chromatin remodeling complexes. Depletion of Arp4 by RNA interference impaired the integrity of these complexes and accelerated the degradation of Brg1, indicating a crucial role in their maintenance, at least in certain human cell lines. We further found that Arp4 can form a heterocomplex with ß-actin. Based on structural similarities between conventional actin and Arp4, and the assumption that actin-Arp4 binding might mimic actin-actin binding, we introduced a series of mutations in Arp4 that might be expected to impair its interaction with ß-actin. Some of them indeed caused reduced binding to ß-actin. Interestingly, such mutant Arp4 proteins also showed reduced incorporation into Brg1 complexes, and their interaction with Myc-associated complexes as well as Tip60 HAT complexes were also impaired. Based on these findings, we propose that ß-actin-Arp4 complex formation might be a crucial feature in some chromatin-modifying enzyme complexes, such as the Brg1 complex.


Assuntos
Actinas/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Actinas/química , Actinas/deficiência , Actinas/genética , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/genética , Transfecção
12.
J Biol Chem ; 286(45): 39200-10, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21937426

RESUMO

From late mitosis to the G(1) phase of the cell cycle, ORC, CDC6, and Cdt1 form the machinery necessary to load MCM2-7 complexes onto DNA. Here, we show that SNF2H, a member of the ATP-dependent chromatin-remodeling complex, is recruited onto DNA replication origins in human cells in a Cdt1-dependent manner and positively regulates MCM loading. SNF2H physically interacted with Cdt1. ChIP assays indicated that SNF2H associates with replication origins specifically during the G(1) phase. Binding of SNF2H at origins was decreased by Cdt1 silencing and, conversely, enhanced by Cdt1 overexpression. Furthermore, SNF2H silencing prevented MCM loading at origins and moderately inhibited S phase progression. Although neither SNF2H overexpression nor SNF2H silencing appeared to impact rereplication induced by Cdt1 overexpression, Cdt1-induced checkpoint activation was inhibited by SNF2H silencing. Collectively, these data suggest that SNF2H may promote MCM loading at DNA replication origins via interaction with Cdt1 in human cells. Because efficient loading of excess MCM complexes is thought to be required for cells to tolerate replication stress, Cdt1- and SNF2H-mediated promotion of MCM loading may be biologically relevant for the regulation of DNA replication.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/fisiologia , Fase G1/fisiologia , Complexos Multiproteicos/metabolismo , Origem de Replicação/fisiologia , Fase S/fisiologia , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/genética , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Complexos Multiproteicos/genética , Ligação Proteica
13.
J Cell Sci ; 123(Pt 2): 225-35, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20048340

RESUMO

CDC6, a replication licensing protein, is partially exported to the cytoplasm in human cells through phosphorylation by Cdk during S phase, but a significant proportion remains in the nucleus. We report here that human CDC6 physically interacts with ATR, a crucial checkpoint kinase, in a manner that is stimulated by phosphorylation by Cdk. CDC6 silencing by siRNAs affected ATR-dependent inhibition of mitotic entry elicited by modest replication stress. Whereas a Cdk-phosphorylation-mimicking CDC6 mutant could rescue the checkpoint defect by CDC6 silencing, a phosphorylation-deficient mutant could not. Furthermore, we found that the CDC6-ATR interaction is conserved in Xenopus. We show that the presence of Xenopus CDC6 during S phase is essential for Xenopus ATR to bind to chromatin in response to replication inhibition. In addition, when human CDC6 amino acid fragment 180-220, which can bind to both human and Xenopus ATR, was added to Xenopus egg extracts after assembly of the pre-replication complex, Xenopus Chk1 phosphorylation was significantly reduced without lowering replication, probably through a sequestration of CDC6-mediated ATR-chromatin interaction. Thus, CDC6 might regulate replication-checkpoint activation through the interaction with ATR in higher eukaryotic cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Células Eucarióticas/enzimologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Extratos Celulares , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Células Eucarióticas/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Mutação/genética , Óvulo/citologia , Fosforilação , Ligação Proteica , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Estresse Fisiológico
14.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33347546

RESUMO

The DNA damage response (DDR) has a critical role in the maintenance of genomic integrity during chromosome replication. However, responses to replication stress evoked by tight DNA-protein complexes have not been fully elucidated. Here, we used bacterial LacI protein binding to lacO arrays to make site-specific replication fork barriers on the human chromosome. These barriers induced the accumulation of single-stranded DNA (ssDNA) and various DDR proteins at the lacO site. SLX4-XPF functioned as an upstream factor for the accumulation of DDR proteins, and consequently, ATR and FANCD2 were interdependently recruited. Moreover, LacI binding in S phase caused underreplication and abnormal mitotic segregation of the lacO arrays. Finally, we show that the SLX4-ATR axis represses the anaphase abnormality induced by LacI binding. Our results outline a long-term process by which human cells manage nucleoprotein obstacles ahead of the replication fork to prevent chromosomal instability.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Recombinases/metabolismo , Estresse Fisiológico , Anáfase , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos , Cromossomos Humanos/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Fase S
15.
J Biochem ; 167(1): 15-24, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545368

RESUMO

Glutamate-rich WD40 repeat containing 1 (GRWD1) functions as a histone chaperone to promote loading of the MCM replication helicase at replication origins. GRWD1 is overexpressed in several cancer cell lines, and GRWD1 overexpression confers tumorigenic potential in human cells. However, less is known concerning its oncogenic activity. Our previous analysis showed that GRWD1 negatively regulates the tumour suppressor p53 via the RPL11-MDM2-p53 and RPL23-MDM2-p53 axes. Here, we demonstrate that GRWD1 directly interacts with p53 via the p53 DNA-binding domain. Upon DNA damage, GRWD1 downregulation resulted in increased p21 expression. Conversely, GRWD1 co-expression suppressed several p53-regulated promoters. GRWD1 interacted with the p21 and MDM2 promoters, and these interactions required p53. By using the Human Cancer Genome Atlas database, we found that GRWD1 expression levels are inversely correlated with the expression levels of some p53-target genes. Interestingly, high GRWD1 expression in combination with low expression levels of some p53-target genes was significantly correlated with poor prognosis in skin melanoma patients with wild-type p53. Taken together, our findings suggest a novel oncogenic function of GRWD1 as a transcriptional regulator of p53 and that GRWD1 might be an attractive therapeutic target and prognostic marker in cancer therapy.


Assuntos
Proteínas de Transporte/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Células HCT116 , Humanos
16.
Sci Rep ; 9(1): 16825, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727981

RESUMO

We previously reported the identification of a novel antimitotic agent with carbazole and benzohydrazide structures: N'-[(9-ethyl-9H-carbazol-3-yl)methylene]-2-iodobenzohydrazide (code number NP-10). However, the mechanism(s) underlying the cancer cell-selective inhibition of mitotic progression by NP-10 remains unclear. Here, we identified NP-10-interacting proteins by affinity purification from HeLa cell lysates using NP-10-immobilized beads followed by mass spectrometry. The results showed that several mitosis-associated factors specifically bind to active NP-10, but not to an inactive NP-10 derivative. Among them, NUP155 and importin ß may be involved in NP-10-mediated mitotic arrest. Because NP-10 did not show antitumor activity in vivo in a previous study, we synthesized 19 NP-10 derivatives to identify more effective NP-10-related compounds. HMI83-2, an NP-10-related compound with a Cl moiety, inhibited HCT116 cell tumor formation in nude mice without significant loss of body weight, suggesting that HMI83-2 is a promising lead compound for the development of novel antimitotic agents.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Polietilenoglicóis/administração & dosagem , beta Carioferinas/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Camundongos , Camundongos Nus , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Gastroenterol ; 42(7): 522-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17653646

RESUMO

BACKGROUND: The aims of this study were (1) to measure levels of cytokines and stress hormones in ulcerative colitis (UC) patients and determine whether there were any disturbances in the nervous, endocrine, or immune systems, and (2) to measure the ability of UC patients to cope with stress (using a sense of coherence, SOC, test) and their perceived self-efficacy, and to elucidate their response to a stress load. METHODS: We administered questionnaires to and took blood samples from 42 outpatients and eight inpatients whose UC was in remission, and 21 healthy volunteers. In addition, we evaluated blood samples from the inpatients and healthy volunteers following a mental calculation stress test. RESULTS: The questionnaire results revealed that self-efficacy was significantly decreased in the patient groups. Levels of adrenocorticotropic hormone, beta-endorphin and interleukin (IL)-6 were significantly higher in the outpatient than in the control group. IL-6 levels significantly increased following the mental calculation stress test in UC patients compared with in the volunteers. CONCLUSIONS: These results indicate that UC patients (1) have hypersensitive nervous, endocrine, and immune systems, and (2) this hypersensitivity was augmented by the mental calculation stress test.


Assuntos
Colite Ulcerativa/fisiopatologia , Colite Ulcerativa/psicologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Estresse Psicológico/fisiopatologia , Adolescente , Hormônio Adrenocorticotrópico/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/fisiopatologia , Testes Psicológicos , beta-Endorfina/metabolismo
18.
J Gastroenterol ; 42(7): 528-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17653647

RESUMO

BACKGROUND: Bleeding from esophagogastric varices is a serious complication of portal hypertension. The aim of the present study was to determine whether endoscopic sclerotherapy with injection of N-butyl-2-cyanoacrylate combined with variceal ligation was useful for hemostasis of bleeding gastric varices. METHODS: Twenty-seven patients with bleeding gastric varices underwent endoscopic treatment with variceal ligation followed by sclerotherapy with N-butyl-2-cyanoacrylate from November 1995 to November 2000. Patients underwent endoscopic variceal ligation only for the bleeding spot just before sclerotherapy. Injection was continued until varices were engorged. After these therapies, patients were followed for at least for 5 years. Retreatment was applied as necessary. RESULTS: Among these patients, 11 had active bleeding and 16 had recent bleeding within 24 h with white or red plaques on gastric varices. All varices presented as nodular or tumorous forms. The hemostasis rate at 1 week after treatment with N-butyl-2-cyanoacrylate was 88.9% (24/27). Among the patients achieving hemostasis at 1 week, 33.3% (8/24) experienced recurrent bleeding between 5 and 53 months after the initial treatment. Five patients with rebleeding were treated with N-butyl-2-cyanoacrylate, and the other three patients were treated by other procedures. The final hemostasis rate was 81.5% (22/27). The 5-year survival rate after initial hemostasis was 63.0% (17/27). CONCLUSIONS: This study showed that endoscopic variceal ligation combined with sclerotherapy might become a recommended choice for effective treatment of bleeding gastric varices.


Assuntos
Embucrilato/uso terapêutico , Varizes Esofágicas e Gástricas/terapia , Hemorragia Gastrointestinal/terapia , Soluções Esclerosantes/uso terapêutico , Escleroterapia , Adulto , Idoso , Terapia Combinada , Endoscopia do Sistema Digestório , Varizes Esofágicas e Gástricas/complicações , Feminino , Seguimentos , Hemorragia Gastrointestinal/etiologia , Hemostasia , Humanos , Ligadura , Masculino , Pessoa de Meia-Idade , Recidiva
19.
Cell Cycle ; 16(15): 1397-1403, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28722511

RESUMO

Increasing attention has been paid to certain ribosomal or ribosome biosynthesis-related proteins involved in oncogenesis. Members of one group are classified as "tumor suppressive factors" represented by RPL5 and RPL11; loss of their functions leads to cancer predisposition. RPL5 and RPL11 prevent tumorigenesis by binding to and inhibiting the MDM2 ubiquitin ligase and thereby up-regulating p53. Many other candidate tumor suppressive ribosomal/nucleolar proteins have been suggested. However, it remains to be experimentally clarified whether many of these factors can actually prevent tumorigenesis and if so, how they do so. Conversely, some ribosomal/nucleolar proteins promote tumorigenesis. For example, PICT1 binds to and anchors RPL11 in nucleoli, down-regulating p53 and promoting tumorigenesis. GRWD1 was recently identified as another such factor. When overexpressed, GRWD1 suppresses p53 and transforms normal human cells, probably by binding to RPL11 and sequestrating it from MDM2. However, other pathways may also be involved.


Assuntos
Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Nucléolo Celular/genética , Humanos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribossomos/genética , Proteína Supressora de Tumor p53/genética
20.
Cell Cycle ; 13(3): 471-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24280901

RESUMO

Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27(Kip1) was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCF(Skp2) ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCF(Skp2) pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA/metabolismo , Fase S , Proteínas de Ciclo Celular/genética , Linhagem Celular , Inativação Gênica , Instabilidade Genômica , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA