Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123985, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316074

RESUMO

Escherichia coli (E. coli) bacteria with varying solution concentrations have been successfully detected using silver nanoparticles (Ag NPs)-based localized surface plasmon resonance (LSPR) biosensors. The Ag NPs were effectively synthesized by a chemical method using trisodium citrate with L-Histidine (L-His) and deposited on the surface of Au thin film-coated half-cylinder BK-7 prisms. He-Ne laser with a wavelength of 632.8 nm was used to generate LSPR phenomena in Kretschmann configuration with prism/Au thin film/His-Ag NPs/E. coli bacteria/air structure arrangements. The variation of E. coli bacteria concentration was carried out to determine the effect of E. coli bacteria concentration on the LSPR curve characteristics. The characterization results showed that the size of Ag NPs was 18.7 nm, and that of His-Ag NPs was 17.9 nm. Selected area electron diffraction results indicated the formation of diffraction rings with the presence of lattice planes (111), (200), (220), and (311), proving the face-centered cubic crystal structure of silver. The absorbance peak of Ag NPs shifted from a wavelength of 421-414 nm with an increase in band gap energy from 2.94 eV to 2.99 eV, along with a decreased average particle size. The functional groups observed in His-Ag NPs showed wavenumbers at 3320 to 3318 cm-1, 2106 to 2129 cm-1, and 1635 cm-1, showing the OH, CH, and C CO bonds, respectively. The SPR angle of the prism/Au thin film/air structure is 44.80°. Meanwhile, the LSPR angle for the prism/Au thin film/His-Ag NPs/air structure is 44.92°. There is an increase in the LSPR angle by 0.12°. Moreover, the minimum reflectance increases by 0.02. After detecting E. coli bacteria, the LSPR angle shifted by 0.26°, 0.38°, and 0.49° for concentrations of 6.0 × 108 CFU/mL, 6.0 × 107 CFU/mL and 6.0 × 106 CFU/mL respectively. However, the minimum reflectance rose from 0.09° to 0.14°, 0.20°, and 0.22°. Moreover, SPR testing with the structure of the prism/Au thin film/E. coli bacteria/air was carried out to determine the contribution of His-Ag NPs for detecting E. coli bacteria. The results showed that no angular shift occurs. These results indicate that using Ag NPs encapsulated with L-His is essential in amplifying the SPR signal and detecting E. coli bacteria. There was a notable alteration in both the LSPR angle and minimum reflectance indicating that adding His-Ag NPs facilitated the interaction between the E. coli and the sensor surface, thereby enhancing the performance of LSPR-based sensors for E. coli detection for low limit of detection value at 0.47 CFU/mL.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos , Prata/química , Nanopartículas Metálicas/química , Escherichia coli , Técnicas Biossensoriais/métodos
2.
J Synchrotron Radiat ; 19(Pt 2): 198-204, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22338679

RESUMO

Energy-domain grazing-incidence (57)Fe-Mössbauer spectroscopy (E-GIMS) with synchrotron radiation (SR) has been developed to study surface and interface structures of thin films. Highly brilliant (57)Fe-Mössbauer radiation, filtered from SR by a (57)FeBO(3) single-crystal nuclear Bragg monochromator, allows conventional Mössbauer spectroscopy to be performed for dilute (57)Fe in a mirror-like film in any bunch-mode operation of SR. A theoretical and experimental study of the specular reflections from isotope-enriched ((57)Fe: 95%) and natural-abundance ((57)Fe: ∼2%) iron thin films has been carried out to clarify the basic features of the coherent interference between electronic and nuclear resonant scattering of (57)Fe-Mössbauer radiation in thin films. Moreover, a new surface- and interface-sensitive method has been developed by the combination of SR-based E-GIMS and the (57)Fe-probe layer technique, which enables us to probe interfacial complex magnetic structures in thin films with atomic-scale depth resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA