Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104838, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209821

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that results from mutations in NOTCH3. How mutations in NOTCH3 ultimately result in disease is not clear, although there is a predilection for mutations to alter the number of cysteines of the gene product, supporting a model in which alterations of conserved disulfide bonds of NOTCH3 drives the disease process. We have found that recombinant proteins with CADASIL NOTCH3 EGF domains 1 to 3 fused to the C terminus of Fc are distinguished from wildtype proteins by slowed mobility in nonreducing gels. We use this gel mobility shift assay to define the effects of mutations in the first three EGF-like domains of NOTCH3 in 167 unique recombinant protein constructs. This assay permits a readout on NOTCH3 protein mobility that indicates that (1) any loss of cysteine mutation in the first three EGF motifs results in structural abnormalities; (2) for loss of cysteine mutants, the mutant amino acid residue plays a minimal role; (3) the majority of changes that result in a new cysteine are poorly tolerated; (4) at residue 75, only cysteine, proline, and glycine induce structural shifts; (5) specific second mutations in conserved cysteines suppress the impact of loss of cysteine CADASIL mutations. These studies support the importance of NOTCH3 cysteines and disulfide bonds in maintaining normal protein structure. Double mutant analysis suggests that suppression of protein abnormalities can be achieved through modification of cysteine reactivity, a potential therapeutic strategy.


Assuntos
CADASIL , Receptor Notch3 , Humanos , CADASIL/genética , Cisteína/genética , Cisteína/metabolismo , Dissulfetos , Fator de Crescimento Epidérmico/genética , Mutação , Receptor Notch3/genética
2.
Exp Gerontol ; 156: 111622, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793939

RESUMO

The nematode Caenorhabditis elegans is a powerful model organism for studying cell development, apoptosis, neuronal circuits, and aging. The isolate N2 is recognized by the C. elegans community as the reference wild-type strain. Interestingly, the lifespan of presumably isogenic C. elegans N2 worms-even when grown under comparable conditions-varies significantly amongst distinct laboratories. This hinders the inter-laboratory comparability of C. elegans lifespan data and raises questions regarding data interpretation and reproducibility. Here, we hypothesized slight alterations in experimental design and worm handling could explain the observed discrepancies. To test this hypothesis, we collected and assessed data from over 1000 published C. elegans N2 lifespan assays as well as corresponding methodological meta-data. We find that mean N2 lifespans range from approximately 7 days to upwards of 35 days, despite laboratories disclosing seemingly comparable experimental conditions. We further demonstrate that, in addition to temperature, the use of the chemical sterilizer 5-fluoro-2'-deoxyuridine (FUDR) may change N2 lifespan. Additionally, we observed differences in average N2 lifespan from experiments originating from distinct geographic locations, indicating a potential effect of location-specific factors on experimental outcomes. Taken as a whole, our work indicates the sum of many small, rather than a few critical, differences in experimental conditions may account for the observed variance in N2 lifespan. We also find that the absence of standardized experimental methods and the insufficient disclosure of experiment details in the peer-reviewed literature limits the inter-lab comparability of published results. We thus propose the establishment of a succinct reporting standard for C. elegans lifespan experiments to increase the reliability and reproducibility, and thus scientific value, of these studies.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Laboratórios , Longevidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA