Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 147(23): 5372-5385, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285592

RESUMO

Cardiovascular diseases are still among the leading causes of mortality and morbidity worldwide. The build-up of fatty plaques in the arteries, leading to atherosclerosis, is the most common cause of cardiovascular diseases. The central player in atherosclerotic plaque formation is the foam cell. Foam cells are formed when monocytes infiltrate from the blood stream into the sub-endothelial space, differentiating into macrophages. With the subsequent uptake and storage of lipoprotein, especially low-density lipoprotein (LDL), they change their phenotype to lipid laden cells. Lowering circulating LDL levels, or initiating cholesterol efflux/reverse cholesterol transport in foam cells, is one of the current clinical therapies. Prescription of the pleiotropic drugs, statins, is the most successful therapy for the treatment and prevention of atherosclerosis. In this study, we used a foam cell model from the macrophage cell line, RAW 246.7, and applied the label-free Fourier Transform Infrared Spectroscopy (FTIR) method, i.e. synchrotron-based microFTIR spectroscopy, to study the lipid efflux process initiated by statins in a dose and time dependent manner. We used glass coverslips as substrates for IR analysis. The optical images (visible and fluorescent light) clearly identify the localization and lipid distribution within the foam cells, and the associated changes before and after culturing them with atorvastatin at concentrations of 0.6, 6 and 60 µg mL-1, for a culture duration between 24 to 72 hours. MicroFTIR spectroscopic spectra uniquely displayed the reduction of lipid content, with higher lipid efflux observed at higher doses of, and longer incubation time with, atorvastatin. Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) analysis demonstrated defined cluster separation at both lipid (3000-2800 cm-1) and fingerprint (1800-1350 cm-1) regions, with more profound discrimination for the atorvastatin dose treatment than time treatment. The data indicate that combining synchrotron-based microFTIR spectroscopy and using glass substrates for foam cells can offer an alternative tool in atherosclerosis investigation at a molecular level, and through cell morphology.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Células Espumosas/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Atorvastatina/uso terapêutico , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico
2.
Anal Chem ; 93(32): 11081-11088, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34355885

RESUMO

The debate of whether a glass substrate can be used in Fourier transform infrared spectroscopy is strongly linked to its potential clinical application. Histopathology glass slides of 1 mm thickness absorb the mid-IR spectrum in the rich fingerprint spectral region. Thus, it is important to assess whether emerging IR techniques can be employed to study biological samples placed on glass substrates. For this purpose, we used optical photothermal infrared (O-PTIR) spectroscopy to study for the first time malignant and non-malignant lung cells with the purpose of identifying IR spectral differences between these cells placed on standard pathology glass slides. The data in this feasibility study showed that O-PTIR can be used to obtain good-quality IR spectra from cells from both the lipid region (3000-2700 cm-1) and the fingerprint region between 1770 and 950 cm-1 but with glass contributions from 1350 to 950 cm-1. A new single-unit dual-range (C-H/FP) quantum cascade laser (QCL) IR pump source was applied for the first time, delivering a clear synergistic benefit to the classification results. Furthermore, O-PTIR is able to distinguish between lung cancer cells and non-malignant lung cells both in the lipid and fingerprint regions. However, when these two spectral ranges are combined, classification accuracies are enhanced with Random Forest modeling classification accuracy results ranging from 96 to 99% across all three studied cell lines. The methodology described here for the first time with a single-unit dual-range QCL for O-PTIR on glass is another step toward its clinical application in pathology.


Assuntos
Vidro , Lasers Semicondutores , Pulmão , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Analyst ; 143(8): 1735-1757, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29504623

RESUMO

Vibrational spectroscopies, based on infrared absorption and/or Raman scattering provide a detailed fingerprint of a material, based on the chemical content. Diagnostic and prognostic tools based on these technologies have the potential to revolutionise our clinical systems leading to improved patient outcome, more efficient public services and significant economic savings. However, despite these strong drivers, there are many fundamental scientific and technological challenges which have limited the implementation of this technology in the clinical arena, although recent years have seen significant progress in addressing these challenges. This review examines (i) the state of the art of clinical applications of infrared absorption and Raman spectroscopy, and (ii) the outstanding challenges, and progress towards translation, highlighting specific examples in the areas of in vivo, ex vivo and in vitro applications. In addition, the requirements of instrumentation suitable for use in the clinic, strategies for pre-processing and statistical analysis in clinical spectroscopy and data sharing protocols, will be discussed. Emerging consensus recommendations are presented, and the future perspectives of the field are assessed, particularly in the context of national and international collaborative research initiatives, such as the UK EPSRC Clinical Infrared and Raman Spectroscopy Network, the EU COST Action Raman4Clinics, and the International Society for Clinical Spectroscopy.

4.
Analyst ; 143(8): 1934, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29595198

RESUMO

Correction for 'Clinical applications of infrared and Raman spectroscopy: state of play and future challenges' by Matthew J. Baker, et al., Analyst, 2018, DOI: 10.1039/c7an01871a.

5.
Rapid Commun Mass Spectrom ; 31(16): 1344-1352, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556307

RESUMO

RATIONALE: Peroxidation of lipids in cellular membranes results in the release of volatile organic compounds (VOCs), including saturated aldehydes. The real-time quantification of trace VOCs produced by cancer cells during peroxidative stress presents a new challenge to non-invasive clinical diagnostics, which as described here, we have met with some success. METHODS: A combination of selected ion flow tube mass spectrometry (SIFT-MS), a technique that allows rapid, reliable quantification of VOCs in humid air and liquid headspace, and electrochemistry to generate reactive oxygen species (ROS) in vitro has been used. Thus, VOCs present in the headspace of CALU-1 cancer cell line cultures exposed to ROS have been monitored and quantified in real time using SIFT-MS. RESULTS: The CALU-1 lung cancer cells were cultured in 3D collagen to mimic in vivo tissue. Real-time SIFT-MS analyses focused on the volatile aldehydes: propanal, butanal, pentanal, hexanal, heptanal and malondialdehyde (propanedial), that are expected to be products of cellular membrane peroxidation. All six aldehydes were identified in the culture headspace, each reaching peak concentrations during the time of exposure to ROS and eventually reducing as the reactants were depleted in the culture. Pentanal and hexanal were the most abundant, reaching concentrations of a few hundred parts-per-billion by volume, ppbv, in the culture headspace. CONCLUSIONS: The results of these experiments demonstrate that peroxidation of cancer cells in vitro can be monitored and evaluated by direct real-time analysis of the volatile aldehydes produced. The combination of adopted methodology potentially has value for the study of other types of VOCs that may be produced by cellular damage.


Assuntos
Aldeídos/análise , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Aldeídos/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Técnicas Eletroquímicas , Humanos , Oxirredução
6.
Analyst ; 141(7): 2238-49, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26933694

RESUMO

One strategy to improve the clinical outcome of radiotherapy is to use nanoparticles as radiosensitizers. Along this line, numerous studies have shown the enhanced effectiveness of tumour cell killing when nanoparticles are exposed to irradiation. However, the mechanisms of action are not clear yet. In addition to the damage due to a possible local radiation dose enhancement, the interaction of nanoparticles with essential biological macromolecules could lead to changes in the cells, such as cell arrest at radiosensitive phases. Within this framework, vibrational spectroscopy was used to investigate the biochemical changes in F98 glioma cells induced by X-ray irradiations combined with gadolinium nanoparticles. Fourier transform infrared (FTIR) microspectroscopy experiments were performed at the Emira laboratory of the SESAME synchrotron (Jordan), allowing the characterisation of spectral signatures of nanoparticle-induced effects in glioma cells. Multivariate analysis of the spectra recorded using principal component analysis reveals clear differences in the DNA, protein and lipid regions in the presence of nanoparticles. Prior to irradiation, results show that nanoparticles induce biochemical modifications in the cells, probably due to changes in the cellular function. Biochemical alterations are amplified in the presence of radiation. In particular, variations in the intensity and in the position of the PO2(-) symmetric and asymmetric modes are observed due to radiation damage to the DNA, which is increased in nanoparticle-treated cells. At 24 hours post-irradiation, biochemical changes related to the hallmark characteristics of cell death are detected. This includes a shift towards low wavenumbers in the amide I and II bands, relative amplitude changes in the CH2 and CH3 stretching modes, along with DNA chromatin condensation indications. Results were confirmed by two complementary cell viability assays.


Assuntos
Gadolínio/química , Gadolínio/farmacologia , Glioma/patologia , Nanopartículas Metálicas , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Ratos , Raios X
7.
FASEB J ; 28(1): 14-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24025727

RESUMO

During aging, collagen structure changes, detrimentally affecting tissues' biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). In this investigation, we conducted a parallel study of microscopic and macroscopic properties of different-aged collagens from newborn to 2-yr-old rats, to examine the effect of aging on fibrillogenesis, mechanical and contractile properties of reconstituted hydrogels from these collagens seeded with or without fibroblasts. In addition to fibrillogenesis of collagen under the conventional conditions, some fibrillogenesis was conducted alongside a 12-T magnetic field, and gelation rate and AGE content were measured. A nondestructive indentation technique and optical coherence tomography were used to determine the elastic modulus and dimensional changes, respectively. It was revealed that in comparison to younger specimens, older collagens exhibited higher viscosity, faster gelation rates, and a higher AGE-specific fluorescence. Exceptionally, only young collagens formed highly aligned fibrils under magnetic fields. The youngest collagen demonstrated a higher elastic modulus and contraction in comparison to the older collagen. We conclude that aging changes collagen monomer structure, which considerably affects the fibrillogenesis process, the architecture of the resulting collagen fibers and the global network, and the macroscopic properties of the formed constructs.


Assuntos
Envelhecimento/fisiologia , Colágeno/química , Colágeno/metabolismo , Animais , Produtos Finais de Glicação Avançada/metabolismo , Estrutura Molecular , Ratos
8.
Analyst ; 140(7): 2066-73, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25610920

RESUMO

Although the potential of vibrational spectroscopy for biomedical applications has been well demonstrated, translation into clinical practice has been relatively slow. This Editorial assesses the challenges facing the field and the potential way forward. While many technological challenges have been addressed to date, considerable effort is still required to gain acceptance of the techniques among the medical community, standardise protocols, extend to a clinically relevant scale, and ultimately assess the health economics underlying clinical deployment. National and international research networks can contribute much to technology development and standardisation. Ultimately, large-scale funding is required to engage in clinical trials and instrument development.


Assuntos
Patologia/métodos , Análise Espectral/métodos , Animais , Líquidos Corporais/citologia , Técnicas de Cultura de Células , Doença , Humanos , Pesquisa Translacional Biomédica
9.
Cytometry A ; 85(8): 688-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845779

RESUMO

Over the last few years, significant scientific insight on the effects of chemotherapy drugs at cellular level using synchrotron-based FTIR (S-FTIR) microspectroscopy has been obtained. The work carried out so far has identified spectral differences in cancer cells before and after the addition of drugs. However, this had to account for the following issues. First, chemotherapy agents cause both chemical and morphological changes in cells, the latter being responsible for changes in the spectral profile not correlated with biochemical characteristics. Second, as the work has been carried out in mixed populations of cells (resistant and sensitive), it is important to distinguish the spectral differences which are due to sensitivity/resistance to those due to cell morphology and/or cell mixture. Here, we successfully cloned resistant and sensitive lung cancer cells to a chemotherapy drug. This allowed us to study a more uniform population and, more important, allowed us to study sensitive and resistant cells prior to the addition of the drug with S-FTIR microscopy. Principal component analysis (PCA) did not detect major differences in resistant cells prior to and after adding the drug. However, PCA separated sensitive cells prior to and after the addition of the drug. This would indicate that the spectral differences between cells prior to and after adding a drug might reside on those more or less sensitive cells that have been able to remain alive when they were collected to be studied with S-FTIR microspectroscopy. This is a proof of concept and a feasibility study showing a methodology that opens a new way to identify the effects of drugs on more homogeneous cell populations using vibrational spectroscopy.


Assuntos
Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons , Linhagem Celular Tumoral , Células Clonais , Desoxicitidina/farmacologia , Humanos , Análise de Componente Principal , Gencitabina
10.
Analyst ; 138(1): 91-5, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136643

RESUMO

Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.


Assuntos
Acetaldeído/metabolismo , Pulmão/citologia , Pulmão/patologia , Espectrometria de Massas , Modelos Biológicos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/química , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hidrogéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA