Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064871

RESUMO

The food industry extensively uses chemically modified starches and their hydrolysates, which is mainly due to their emulsification ability. Therefore, it becomes inevitable to develop new starch derivatives, including modified starch hydrolysates, and effective preparation methods to meet the increasing demands of producers, consumers, and technology. This study comprehensively researches the physical, chemical, and functional properties (such as the water-binding capacity, swelling power, solubility, and fat absorption capacity) of chemically modified biopolymers and their enzymatic hydrolysis products. We utilized oxidized and acetylated potato and waxy-corn starches with varying degrees of substitution by carboxyl and acetyl groups in our research. The process of enzymatic hydrolysis was performed in a recirculated membrane reactor (CRMR). Our findings indicated that the physicochemical properties of starch derivatives and their hydrolysates depended on the biological origin of the biopolymer and the type and degree of modification. However, the presence of carboxyl groups in the modified starch molecules is critical and affects the rheological properties and water-binding capacity of the starch preparations. For example, in the case of waxy-corn starch preparations with a lower content of carboxyl groups (i.e., derivatives with a low degree of oxidation), the water-binding capacity (WBC) increases when compared to native starch. The highest WBC value of 206.3% was noted for the doubly modified waxy-corn starch with an oxidation degree of 0.2% and an acetylation degree of 2.5%, while native waxy-corn starch shows a WBC of 161.4%. In contrast, it was observed that preparations with a higher content of carboxyl groups, i.e., derivatives with an oxidation degree of 2.5%, show a lower swelling power compared to native waxy starch.


Assuntos
Amido , Amido/química , Amido/análogos & derivados , Hidrólise , Tecnologia de Alimentos/métodos , Solubilidade , Água/química , Oxirredução , Solanum tuberosum/química , Acetilação , Reologia
2.
Materials (Basel) ; 15(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161180

RESUMO

In recent years, natural-based polymeric composites have gained the attention of researchers and the industry due to their low environmental impact and good applicational properties. A promising example of these materials is polylactide-based composites filled with linseed cake. Even though they can be characterized by reduced brittleness and enhanced crystallization rate, their applicational potential cannot be fully evaluated without knowing their tribological properties. This paper is aimed to analyze the influence of the oil contained by the filler on the mechanical and frictional properties of polylactide-based composites. Specimens of unfilled polylactide and its composites containing 10 wt % of linseed cake with different oil content were prepared by injection molding. Their microhardness was measured by the Vickers method. The softening temperature was determined by the Vicat method. The scratch resistance of the samples was tested with the loading of 10, 20 and 40 N. The coefficient of friction was evaluated by the pin-on-plate method, using CoCrMo alloy as the counter surface. It was found that the oil content in the filler does not directly influence the mechanical and tribological properties, but the composite samples present comparable hardness and lower coefficient of friction than the unfilled polymer, so they can be a good eco-friendly alternative to the unfilled polylactide when the frictional properties are an important factor.

3.
Materials (Basel) ; 14(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34772199

RESUMO

The MgCa0.7 alloy may be a promising material for biodegradable surgical wires. In this paper, the technology for producing surgical wires from this alloy has been developed, based both on finite element modelling and experimental study. In particular, the extrusion and hot-drawing effects on the mechanical properties, microstructures, in-vitro rates of biocorrosion, and cytotoxicity to human cancer cells (SaOS-2) and healthy (hPDL) ones, have been determined. An approximately 30-40% increase in corrosion rate due to increasing hot-drawing temperature was observed. An effect of hot-drawing temperature on cytotoxicity was also found. Notably, at various stages of the final wires' production, the MgCa0.7 alloy became toxic to cancer cells. This cytotoxicity depended on the alloys' processing parameters and was maximal for the as-extruded rod and for the wires immediately after hot drawing at 440 °C. Thus, the careful selection of processing parameters makes it possible to obtain a product that is not only a promising candidate for biodegradable surgical wires, but one which also has intrinsic bioactive properties that produce antitumor activity.

4.
Colloids Surf B Biointerfaces ; 74(1): 238-43, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734024

RESUMO

The aim of the present work was to study the physicochemical properties of doubly modified, by cross-linking and acetylating, starches as well as the products of their enzymatic hydrolysis. A two step procedure of hydrolysis, including the batch and membrane reactors, were investigated. The second step of enzymatic processes were carried out in a continuous recycle membrane reactor (CRMR). Three kinds of commercial starches--two preparations of acetylated distarch adipate E1422 of different degrees of cross-linking, as well as one preparation of acetylated distarch phosphate E1414 were examined. It was found that the degree of substitution of acetyl groups in the macromolecules of starch did not influence the effectiveness of hydrolysis. However, the degree of cross-linking with adipate groups slightly decreased the efficiency of processing in the CRMR. Additionally, the relationship between the type of hydrocolloid and its adsorption activity in the air/water and oil/water systems was considered. All obtained derivatives revealed adsorption properties and reduced the surface/interface tension in the air/water and oil/water systems. The efficiency and effectiveness of adsorption of the investigated hydrocolloids were affected by the type of modification as well as the degree of substitution of acetyl groups in the macromolecules of starch. Particle size distributions formed in aqueous solutions for all investigated hydrolyses were determined and compared with results obtained for commercial products.


Assuntos
Reatores Biológicos , Conservação dos Recursos Naturais , Reagentes de Ligações Cruzadas/farmacologia , Membranas Artificiais , Amido/química , Acetilação/efeitos dos fármacos , Adsorção/efeitos dos fármacos , Coloides , Glucose/análise , Hidrólise/efeitos dos fármacos , Tamanho da Partícula , Tensão Superficial/efeitos dos fármacos , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA