Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Chem Rev ; 123(13): 8154-8231, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37276018

RESUMO

Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.

2.
Nano Lett ; 24(11): 3441-3447, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457695

RESUMO

Layered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear. Herein, we uncover the crucial role of biexcitons in photon-dressed states and demonstrate precise optical control of the excitonic states via the biexcitonic OSE in 2DHPs. With fine step tuning of the driven energy, we fully parametrize the evolution of exciton resonance modulation. The biexcitonic OSE enables Floquet engineering of the exciton resonance with either a blue-shift or a red-shift of the energy levels. Our findings shed new light on the intricate nature of coherent light-matter interactions in 2DHPs and extend the degree of freedom for ultrafast coherent optical control over excitonic states.

3.
J Am Chem Soc ; 146(1): 437-449, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158611

RESUMO

Harnessing quantum confinement (QC) effects in semiconductors to retard hot carrier cooling (HCC) is an attractive approach for enabling efficient hot carrier extraction to overcome the Shockley-Queisser limit. However, there is a debate about whether halide perovskite nanocrystals (PNCs) can effectively exploit these effects. To address this, we utilized pump-probe and multipulse pump-push-probe spectroscopy to investigate HCC behavior in PNCs of varying sizes and cation compositions. Our results validate the presence of an intrinsic phonon bottleneck with clear manifestations of QC effects in small CsPbBr3 PNCs exhibiting slower HCC rates compared to those of larger PNCs. However, the replacement of inorganic Cs+ with organic cations suppresses this intrinsic bottleneck. Furthermore, PNCs exhibit distinct size-dependent HCC behavior in response to changes in the cold carrier densities. We attribute this to the enhanced exciton-exciton interactions in strongly confined PNCs that facilitate Auger heating. Importantly, our findings dispel the existing controversy and provide valuable insights into design principles for engineering QC effects in PNC hot carrier applications.

4.
Small ; 19(40): e2301831, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37279774

RESUMO

A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein-Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics. However, limited information from PPP on the initial excitation density and carrier temperature curtails its full potential. Herein, this work bridges this gap in PPP with a unified model that retrieves these essential hot carrier metrics like initial carrier density and carrier temperature under the push conditions, thus permitting direct comparison with traditional PP spectroscopy. These results are well-fitted by the phonon bottleneck model, from which the longitudinal optical phonon scattering time τLO , for MAPbBr3 and MAPbI3 halide perovskite thin film samples are determined to be 240 ± 10 and 370 ± 10 fs, respectively.

5.
Phys Rev Lett ; 130(21): 213605, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295080

RESUMO

Photon-mediated interactions within an excited ensemble of emitters can result in Dicke superradiance, where the emission rate is greatly enhanced, manifesting as a high-intensity burst at short times. The superradiant burst is most commonly observed in systems with long-range interactions between the emitters, although the minimal interaction range remains unknown. Here, we put forward a new theoretical method to bound the maximum emission rate by upper bounding the spectral radius of an auxiliary Hamiltonian. We harness this tool to prove that for an arbitrary ordered array with only nearest-neighbor interactions in all dimensions, a superradiant burst is not physically observable. We show that Dicke superradiance requires minimally the inclusion of next-nearest-neighbor interactions. For exponentially decaying interactions, the critical coupling is found to be asymptotically independent of the number of emitters in all dimensions, thereby defining the threshold interaction range where the collective enhancement balances out the decoherence effects. Our findings provide key physical insights to the understanding of collective decay in many-body quantum systems, and the designing of superradiant emission in physical systems for applications such as energy harvesting and quantum sensing.


Assuntos
Fótons , Análise por Conglomerados
6.
Nano Lett ; 22(17): 7195-7202, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35976688

RESUMO

Carrier diffusion and surface recombination are key processes influencing the performance of conventional semiconductor devices. However, the interplay of photon recycling together with these processes in halide perovskites obfuscates our understanding. Herein, we discern these inherent processes in a thin FAPbBr3 perovskite single crystal (PSC) utilizing a unique transient reflectance technique that allows accurate diffusion modeling with clear boundary conditions. Temperature-dependent measurements reveal the coexistence of shallow and deep traps at the surface. The inverse quadratic dependence of temperature on carrier mobility µ suggests an underlying scattering mechanism arising from the anharmonic deformation of the PbBr6 cage. Our findings ascertain the fundamental limits of the intrinsic surface recombination velocity (S) and carrier diffusion coefficient (D) in PSC samples. Importantly, these insights will help resolve the ongoing debate and clarify the ambiguity surrounding the contributions of photon recycling and carrier diffusion in perovskite optoelectronics.

7.
Nano Lett ; 21(1): 405-413, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337888

RESUMO

Two-dimensional (2D) lead halide Ruddlesden-Popper perovskites (RPP) have recently emerged as a prospective material system for optoelectronic applications. Their self-assembled multi quantum-well structure gives rise to the novel interwell energy funnelling phenomenon, which is of broad interests for photovoltaics, light-emission applications, and emerging technologies (e.g., spintronics). Herein, we develop a realistic finite quantum-well superlattice model that corroborates the hypothesis of exciton delocalization across different quantum-wells in RPP. Such delocalization leads to a sub-50 fs coherent energy transfer between adjacent wells, with the efficiency depending on the RPP phase matching and the organic large cation barrier lengths. Our approach provides a coherent and comprehensive account for both steady-state and transient dynamical experimental results in RPPs. Importantly, these findings pave the way for a deeper understanding of these systems, as a cornerstone crucial for establishing material design rules to realize efficient RPP-based devices.

8.
Nano Lett ; 21(10): 4137-4144, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33913710

RESUMO

Colloidal CdSe nanoplatelets (NPLs) have substantial potential in light-emitting applications because of their quantum-well-like characteristics. The self-trapped state (STS), originating from strong electron-phonon coupling (EPC), is promising in white light luminance because of its broadband emission. However, achieving STS in CdSe NPLs is extremely challenging because of their intrinsic weak EPC nature. Herein, we developed a strong STS emission in the spectral range of 450-600 nm by building superlattice (SL) structures with colloidal CdSe NPLs. We demonstrated that STS is generated via strong coupling of excitons and zone-folded longitudinal acoustic phonons with formation time of ∼450 fs and localization length of ∼0.56 nm. The Huang-Rhys factor, describing the EPC strength in SL structure, is estimated to be ∼19.9, which is much larger than that (∼0.1) of monodispersed CdSe NPLs. Our results provide an in-depth understanding of STS and a platform for generating and manipulating STS by designing SL structures.

9.
Opt Express ; 29(5): 7948-7955, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726286

RESUMO

The bismuth double perovskite Cs2AgBiBr6 has been regarded as a potential candidate for lead-free perovskite photovoltaics. A detailed study on the coherent acoustic phonon dynamics in the pure, Sb- and Tl-alloyed Cs2AgBiBr6 single crystals is performed to understand the effects of alloying on the phonon dynamics and band edge characteristics. The coherent acoustic phonon frequencies are found to be independent of the alloying, while the damping rates are highly dependent on the alloying. Based on the mechanism of coherent acoustic phonon damping, a technique has been successfully developed that can accurately extract the absorption spectra near the indirect band gap for these single crystals with coefficients on the order of 102 cm-1.

10.
J Chem Phys ; 152(13): 130901, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268753

RESUMO

Halide perovskites hold great promise for next generation printable optoelectronic devices. Within a decade of their debut in photovoltaics, these amazing materials proliferate beyond solar cells to applications such as light-emitting devices, lasers, radiation detectors, and memristors. Such versatility stems from perovskites' favorable optoelectronic properties that are highly exceptional for a facile solution-processed system. Halide perovskite emitters have made significant inroads, in particular, perovskite light emitting device (PeLED) efficiencies have risen from <1% to >20% within 5 years, and perovskite continuous wave amplified spontaneous emission has also been demonstrated recently. This perspective distills the photophysical mechanisms underpinning the various approaches in enhancing their radiative efficiencies. Selected works are highlighted to detail the milestones and to chart the direction the field is heading. Challenges and opportunities for solid-state PeLEDs are discussed. A clear understanding of their basic photophysics and structure-function relations holds the key to rationalizing strategies and streamlining efforts to realize high efficiency PeLEDs and perovskite lasers.

11.
J Am Chem Soc ; 141(40): 15972-15976, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31522501

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) are a new generation of high-performance materials for solar cells and light emitting diodes. Beyond these applications, ferroelectricity and spin-related properties of HOIPs are increasingly attracting interests. The presence of strong spin-orbit coupling, allied with symmetry breaking ensured by remanent polarization, should give rise to Rashba-type splitting of electronic bands in HOIP. However, the report of both ferroelectricity and Rashba effect in HOIP is rare. Here we report the observation of robust ferroelectricity and Rashba effect in two-dimensional Dion-Jacobson perovskites.

12.
J Am Chem Soc ; 141(3): 1235-1241, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30561996

RESUMO

Resolving the structure-property relationships of two-dimensional (2D) organic-inorganic hybrid perovskites is essential for the development of photovoltaic and photoelectronic devices. Here, pressure (0-10 GPa) was applied to 2D hybrid perovskite flakes mechanically exfoliated from butylammonium lead halide single crystals, (C4H9NH3)2PbI4, from which we observed a series of changes of the strong excitonic emissions in the photoluminescence spectra. By correlating with in situ high-pressure X-ray diffraction results, we examine successfully the relationship between structural modifications in the inorganic PbI42- layer and their excitonic properties. During the transition between Pbca (1b) phase and Pbca (1a) phase at around 0.1 GPa, the decrease in ⟨Pb-I-Pb⟩ bond angle and increase in Pb-I bond length lead to an abrupt blue shift of the excitonic bandgap. The presence of the P21/a phase above 1.4 GPa increases the ⟨Pb-I-Pb⟩ bond angle and decreases the Pb-I bond length, leading to a deep red shift of the excitonic bandgap. The total band gap narrowing of ∼350 meV to 2.03 eV at 5.3 GPa before amorphization, facilitates (C4H9NH3)2PbI4 as a much better solar absorber. Moreover, phase transitions inevitably modify the carrier lifetime of (C4H9NH3)2PbI4, where an initial 150 ps at ambient phase is prolongated to 190 ps in the Pbca (1a) phase along with enhanced photoluminescence (PL), originating from pressure-induced strong radiative recombination of trapped excitons.The onset of P21/a phase shortens significantly the carrier lifetime to 53 ps along with a weak PL emission due to pressure-induced severe lattice distortion and amorphization. High-pressure study on (C4H9NH3)2PbI4 nm-thin flakes may provide insights into the mechanisms for synthetically designing novel 2D hybrid perovskite based photoelectronic devices and solar cells.

13.
Angew Chem Int Ed Engl ; 58(11): 3456-3460, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30629313

RESUMO

Two-dimensional lead and tin halide perovskites were prepared by intercalating the long alkyl group 1-hexadecylammonium (HDA) between the inorganic layers. We observed visible-light absorption, narrow-band photoluminescence, and nanosecond photoexcited lifetimes in these perovskites. Owing to their hydrophobicity and stability even in humid air, we applied these perovskites in the decarboxylation and dehydrogenation of indoline-2-carboxylic acids. (HDA)2 PbI4 or (HDA)2 SnI4 were investigated as photoredox catalysts for these reactions, and quantitative conversion and high yields were observed with the former.

14.
Opt Express ; 26(2): A153-A156, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401905

RESUMO

This joint Optics Express and Optical Materials Express feature issue presents a collection of nine papers on the topic of halide perovskites for optoelectronics. Perovskite materials have attracted significant attention over the past four years, initially for their outstanding performance in thin film solar cells, but more recently for applications in light-emitting devices (LEDs and lasers), photodetectors and nonlinear optics. At the same time, there is still much more to learn about the fundamental properties of these materials, and how these depend on composition, processing, and exposure to the environment. This feature issue provides a snapshot of some of the latest research in this rapidly-evolving multidisciplinary field.

15.
Chemphyschem ; 19(9): 1075-1080, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29297203

RESUMO

Metal halide perovskites have demonstrated breakthrough performances as absorber and emitter materials for photovoltaic and display applications respectively. However, despite the low manufacturing cost associated with solution-based processing, the propensity for defect formation with this technique has led to an increasing need for defect passivation. Here, we present an inexpensive and facile method to remedy surface defects through a postdeposition treatment process using branched alkylammonium cation species. The simultaneous realignment of interfacial energy levels upon incorporation of tetraethylammonium bromide onto the surface of CH3 NH3 PbBr3 films contributes favorably toward the enhancement in overall light-emitting diode characteristics, achieving maximum luminance, current efficiency, and external quantum efficiency values of 11 000 cd m-2 , 0.68 cd A-1 , and 0.16 %, respectively.

16.
J Phys Chem A ; 122(31): 6416-6423, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30011371

RESUMO

Organic-inorganic hybrid perovskites with considerable dielectric differences near the phase transition are potential candidates as phase transition materials (PTMs). However, compared with traditional PTMs, which require multiple switchable channels, the hybrid perovskites so far show only switching behavior in dielectric constants. We herein report a new crystal design strategy and successful synthesis of a two-dimensional perovskite (C6H5C2H4NH3)2MnCl4. In this hybrid perovskite, the manganese chloride octahedron is a crystal field sensitive luminescent molecular system. The distortion level of MnCl64- also depends on temperature during the order-disorder phase transition. Hence, such a manganese octahedron-based perovskite can exhibit switching behaviors in both dielectric and optical properties. We observe a 14% decrease in optical absorption and 1.6 times increase in dielectric constant during the phase transition at 365 K. In addition, the characteristic photoluminescence decreases by 17% in intensity. Such a molecule-based crystal design paves a new way to explore multifunctional PTMs based on organic-inorganic perovskites.

17.
Nano Lett ; 17(12): 7424-7432, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29125763

RESUMO

We report the high yield synthesis of about 11 nm sized CH3NH3PbBr3 nanocrystals with near-unity photoluminescence quantum yield. The nanocrystals are formed in the presence of surface-binding ligands through their direct precipitation in a benzyl alcohol/toluene phase. The benzyl alcohol plays a pivotal role in steering the surface ligands binding motifs on the NC surface, resulting in enhanced surface-trap passivation and near-unity PLQY values. We further demonstrate that thin films from purified CH3NH3PbBr3 nanocrystals are stable >4 months in air, exhibit high optical gain (about 520 cm-1), and display stable, ultralow amplified spontaneous emission thresholds of 13.9 ± 1.3 and 569.7 ± 6 µJ cm-2 at one-photon (400 nm) and two-photon (800 nm) absorption, respectively. To the best of our knowledge, the latter signifies a 5-fold reduction of the lowest reported threshold value for halide perovskite nanocrystals to date, which makes them ideal candidates for light-emitting and low-threshold lasing applications.

18.
J Am Chem Soc ; 139(1): 269-276, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27966340

RESUMO

The use of sunlight to drive organic reactions constitutes a green and sustainable strategy for organic synthesis. Herein, we discovered that the earth-abundant aluminum oxide (Al2O3) though paradigmatically known to be an insulator could induce an immense increase in the selective photo-oxidation of different benzyl alcohols in the presence of a large variety of dyes and O2. This unique phenomenon is based on the surface complexation of benzyl alcohol (BnOH) with the Brønsted base sites on Al2O3, which reduces its oxidation potential and causes an upshift in its HOMO for electron abstraction by the dye. The surface complexation of O2 with Al2O3 also activates the adsorbed O2 for receiving electrons from the photoexcited dyes. This discovery brings forth a new understanding on utilizing surface complexation mechanisms between the reactants and earth abundant materials to effectively achieve a wider range of photoredox reactions.

19.
J Am Chem Soc ; 139(3): 1073-1076, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28051869

RESUMO

We report the fast growth of high-quality millimeter-size monolayer MoSe2 crystals on molten glass using an ambient pressure CVD system. We found that the isotropic surface of molten glass suppresses nucleation events and greatly improves the growth of large crystalline domains. Triangular monolayer MoSe2 crystals with sizes reaching ∼2.5 mm, and with a room-temperature carrier mobility up to ∼95 cm2/(V·s), can be synthesized in 5 min. The method can also be used to synthesize millimeter-size monolayer MoS2 crystals. Our results demonstrate that "liquid-state" glass is a highly promising substrate for the low-cost growth of high-quality large-size 2D transition metal dichalcogenides (TMDs).

20.
Acc Chem Res ; 49(2): 294-302, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26820796

RESUMO

Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation to the spectral features of halide perovskites and their origins. In the process, we emphasize some key findings of seminal photophysical studies and draw attention to the interpretations that remain divergent and the open questions. This is followed by a general description into how we prepare and conduct the TAS characterization of CH3NH3PbI3 thin films in our laboratory with specific discussions into the potential pitfalls and the influence of thin film processing on the kinetics. Lastly, we conclude with our views on the challenges and opportunities from the photophysical perspective for the field and our expectations for systems beyond lead halide perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA