Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Biol Sci ; 288(1960): 20211436, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641728

RESUMO

Tooth replacement rates of polyphyodont cartilaginous and bony fishes are hard to determine because of a lack of obvious patterning and maintaining specimens long enough to observe replacement. Pulse-chase is a fluorescent technique that differentially colours developing mineralized tissue. We present in situ tooth replacement rate and position data for the oral and pharyngeal detentions of Ophiodon elongatus (Pacific lingcod). We assessed over 10 000 teeth, in 20 fish, and found a daily replacement rate of about two teeth (3.6% of the dentition). The average tooth is in the dental battery for 27 days. The replacement was higher in the lower pharyngeal jaw (LPJ). We found no difference between replacement rates of feeding and non-feeding fish, suggesting feeding was not a driver of tooth replacement. Lingcod teeth have both a size and location fate; smaller teeth at one spot will not grow into larger teeth, even if a large tooth nearby is lost. We also found increased rates of replacement at the posterior of the LPJ relative to the anterior. We propose that lingcod teeth do not migrate in the jaw as they develop; their teeth are fated in size and location, erupting in their functional position.


Assuntos
Perciformes , Dente , Animais , Dentição , Arcada Osseodentária , Odontogênese
2.
Front Zool ; 18(1): 16, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863343

RESUMO

We tested the hypothesis that deep-sea fishes have poorly mineralized bone relative to shallower-dwelling species using data from a single family that spans a large depth range. The family Liparidae (snailfishes, Cottiformes) has representatives across the entire habitable depth range for bony fishes (0 m-> 8000 m), making them an ideal model for studying depth-related trends in a confined phylogeny. We used micro-computed tomography (micro-CT) scanning to test three aspects of skeletal reduction in snailfishes (50 species) across a full range of habitat depths: 1) reduction of structural dimensions, 2) loss of skeletal elements, and 3) reduction in bone density. Using depth data from the literature, we found that with increasing depth, the length of the dentary, neurocranium, and suborbital bones decreases. The ventral suction disk decreases width with increasing maximum habitat depth and is lost entirely in some deeper-living taxa, though not all. Although visual declines in bone density in deeper-living taxa were evident across full skeletons, individual densities of the lower jaw, vertebra, suction disk, hypural plate, and otoliths did not significantly decline with any depth metric. However, pelagic and polar taxa tended to show lower density bones compared to other species in the family. We propose that skeletal reductions allow snailfishes to maintain neutral buoyancy at great depths in the water column, while supporting efficient feeding and locomotion strategies. These findings suggest that changes in skeletal structure are non-linear and are driven not only by hydrostatic pressure, but by other environmental factors and by evolutionary ancestry, calling the existing paradigm into question.

3.
J Exp Biol ; 219(Pt 21): 3399-3411, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27807217

RESUMO

Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling and phylogenetic comparative analyses. We found that computationally efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly measured spearing species, Coronis scolopendra The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order of magnitude smaller, yet experienced values of drag-induced torque similar to those of a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer, which uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In summary, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages.


Assuntos
Estruturas Animais/fisiologia , Decápodes/anatomia & histologia , Decápodes/fisiologia , Hidrodinâmica , Comportamento Predatório/fisiologia , Rotação , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Movimento , Especificidade da Espécie , Torque
4.
Integr Org Biol ; 5(1): obad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035037

RESUMO

The increased use of imaging technology in biological research has drastically altered morphological studies in recent decades and allowed for the preservation of important collection specimens alongside detailed visualization of bony and soft-tissue structures. Despite the benefits associated with these newer imaging techniques, there remains a need for more "traditional" methods of morphological examination in many comparative studies. In this paper, we describe the costs and benefits of the various methods of visualizing, examining, and comparing morphological structures. There are significant differences not only in the costs associated with these different methods (monetary, time, equipment, and software), but also in the degree to which specimens are destroyed. We argue not for any one particular method over another in morphological studies, but instead suggest a combination of methods is useful not only for breadth of visualization, but also for the financial and time constraints often imposed on early-career research scientists.

5.
J Fish Biol ; 80(1): 86-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22220891

RESUMO

The form and function of the support skeleton, musculature and teeth were examined in an ontogenetic series of Pacific hagfish Eptatretus stoutii spanning about a six-fold range in total length (L(T)). Tooth area, feeding apparatus length, basal plate size, theoretical dental plate retractile force, penetration force and applied tooth stress were measured relative to body size. Morphological variables (e.g. tooth area and basal plate size) scaled with positive allometry and functional variables (e.g. retractile force and applied tooth stress) scaled isometrically with L(T). These results suggest that juveniles do not undergo ontogenetic dietary changes and consume functionally equivalent prey to adults, although adults can grasp proportionally larger portions of food. Low tooth stress in juveniles and adults imposes mechanical constraints to puncturing and tearing, which are circumvented by a preference for softer prey tissue or the inclusion of knotting behaviours for reducing tougher prey.


Assuntos
Feiticeiras (Peixe)/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Animais , Fenômenos Biomecânicos , Força de Mordida , Tamanho Corporal , Dieta , Comportamento Alimentar , Arcada Osseodentária/fisiologia , Dente/anatomia & histologia
6.
Integr Org Biol ; 4(1): obac013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814192

RESUMO

Synopsis: Archerfishes (Toxotidae) are variously found in the fresh- and brackish-water environments of Asia Pacific and are well known for their ability to shoot water at terrestrial prey. These shots of water are intended to strike their prey and cause it to fall into the water for capture and consumption. While this behavior is well known, there are competing hypotheses (blowpipe vs. pressure tank hypothesis) of how archerfishes shoot and which oral structures are involved. Current understanding of archerfish shooting structures is largely based on two species, Toxotes chatareus and T. jaculatrix. We do not know if all archerfishes possess the same oral structures to shoot water, if anatomical variation is present within these oral structures, or how these features have evolved. Additionally, there is little information on the evolution of the Toxotidae as a whole, with all previous systematic works focusing on the interrelationships of the family. We first investigate the limits of archerfish species using new and previously published genetic data. Our analyses highlight that the current taxonomy of archerfishes does not conform to the relationships we recover. Toxotes mekongensis and T. siamensis are placed in the synonymy of T. chatareus, Toxotes carpentariensis is recognized as a species and removed from the synonymy of T. chatareus, and the genus Protoxotes is recognized for T. lorentzi based on the results of our analyses. We then take an integrative approach, using a combined analysis of discrete hard- and soft-tissue morphological characters with genetic data, to construct a phylogeny of the Toxotidae. Using the resulting phylogenetic hypothesis, we then characterize the evolutionary history and anatomical variation within the archerfishes. We discuss variation in the oral structures and the evolution of the mechanism with respect to the interrelationships of archerfishes, and find that the oral structures of archerfishes support the blowpipe hypothesis but soft-tissue oral structures may also play a role in shooting. Finally, by comparing the morphology of archerfishes to their sister group, we find that the Leptobramidae has relevant shooting features in the oral cavity, suggesting that some components of the archerfish shooting mechanism are examples of co-opted or exapted traits. Sinopsis Malay: Pelbagai jenis Ikan Sumpit (Toxotidae) dapat dijumpai di persekitaran air tawar dan payau di Asia Pasifik dan mereka terkenal dengan kebolehan mereka menembak air ke arah mangsa di darat. Tembakan air ini bertujuan untuk menyerang mangsa mereka dan menyebabkan mereka jatuh ke dalam air untuk ditangkap dan dimakan. Walaupun tingkah laku ini diketahui umum, terdapat hipotesis yang bersaing (hipotesis sumpitan vs. tangki tekanan) tentang cara ikan sumpit menembak dan struktur mulut yang terlibat. Pemahaman semasa tentang struktur menembak ikan sumpit adalah sebahagian besarnya berdasarkan dua spesies, Toxotes chatareus dan T. jaculatrix. Kami tidak pasti sama ada semua ikan sumpit mempunyai struktur mulut yang sama untuk menembak air, jika variasi anatomi terdapat dalam struktur mulut ini, atau bagaimana ciri-ciri ini telah berkembang. Tambahan pula, terdapat sedikit maklumat tentang evolusi Toxotidae secara keseluruhan, dengan semua penyelidikan sistematik sebelum ini memfokuskan pada hubungan saling keluarga. Kami pada mulanya mengkaji had spesies ikan sumpit ini menggunakan data genetik baharu dan yang diterbitkan sebelum ini. Analisis kami menunjukkan bahawa taksonomi semasa ikan sumpit tidak mematuhi hubungan yang kami perolehi. Toxotes mekongensis dan T. siamensis diletakkan bersama kesinoniman T. chatareus, Toxotes carpentariensis yang diiktiraf sebagai satu spesies dan dikeluarkan daripada kesinoniman T. chatareus, dan genus Protoxotes yang diiktiraf untuk T. lorentzi adalah berdasarkan hasil analisis kami. Kemudian kami mengambil pendekatan integratif, menggunakan analisis gabungan karakter morfologi tisu keras dan lembut diskret dengan data genetik, untuk membina filogeni Toxotidae. Menggunakan hipotesis filogenetik yang terhasil, kami kemudian mencirikan sejarah evolusi dan variasi anatomi dalam ikan sumpit. Kami membincangkan variasi dalam struktur mulut dan evolusi mekanisme berkenaan yang berkaitan dengan ikan sumpit, dan mendapati bahawa struktur mulut ikan sumpit menyokong hipotesis sumpitan tetapi struktur mulut tisu lembut juga mungkin memainkan peranan dalam cara menembak. Akhir sekali, dengan membandingkan morfologi ikan sumpit kepada kumpulan saudara mereka, kami mendapati bahawa Leptobramidae mempunyai ciri penangkapan yang relevan dalam rongga mulut mereka, menunjukkan bahawa beberapa komponen mekanisme penangkapan ikan sumpit merupakan contoh ciri-ciri yang diikut-sertakan atau diguna semula.

7.
J R Soc Interface ; 17(169): 20200301, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32781934

RESUMO

Biological armours are potent model systems for understanding the complex series of competing demands on protective exoskeletons; after all, armoured organisms are the product of millions of years of refined engineering under the harshest conditions. Fishes are no strangers to armour, with various types of armour plating common to the 400-500 Myr of evolution in both jawed and jawless fishes. Here, we focus on the poachers (Agonidae), a family of armoured fishes native to temperate waters of the Pacific rim. We examined armour morphology, body stiffness and swimming performance in the northern spearnose poacher (Agonopsis vulsa) over ontogeny. As juveniles, these fishes make frequent nocturnal forays into the water column in search of food, while heavily armoured adults are bound to the benthos. Most armour dimensions and density increase with body length, as does body stiffness. Juvenile poachers have enlarged spines on their armour whereas adults invest more mineral in armour plate bases. Adults are stiffer and accelerate faster than juveniles with an anguilliform swimming mode. Subadults more closely approximate adults more than smaller juveniles, with regards to both swimming and armour mechanics. Poacher armour serves multiple functions over ontogeny, from facilitating locomotion, slowing sinking and providing defence.


Assuntos
Perciformes , Natação , Animais , Peixes , Locomoção , Modelos Biológicos
8.
Integr Org Biol ; 2(1): obaa009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33791553

RESUMO

The decreasing cost of acquiring computed tomographic (CT) data has fueled a global effort to digitize the anatomy of museum specimens. This effort has produced a wealth of open access digital three-dimensional (3D) models of anatomy available to anyone with access to the Internet. The potential applications of these data are broad, ranging from 3D printing for purely educational purposes to the development of highly advanced biomechanical models of anatomical structures. However, while virtually anyone can access these digital data, relatively few have the training to easily derive a desirable product (e.g., a 3D visualization of an anatomical structure) from them. Here, we present a workflow based on free, open source, cross-platform software for processing CT data. We provide step-by-step instructions that start with acquiring CT data from a new reconstruction or an open access repository, and progress through visualizing, measuring, landmarking, and constructing digital 3D models of anatomical structures. We also include instructions for digital dissection, data reduction, and exporting data for use in downstream applications such as 3D printing. Finally, we provide Supplementary Videos and workflows that demonstrate how the workflow facilitates five specific applications: measuring functional traits associated with feeding, digitally isolating anatomical structures, isolating regions of interest using semi-automated segmentation, collecting data with simple visual tools, and reducing file size and converting file type of a 3D model.


PORTUGUÊS (PORTUGUESE)  O Guia da Galáxia da Tomografia Computadorizada para um Biólogo: instruções passo a passo para preparar e analisar dados tomográficos usando um software gratuito de acesso aberto  Thaddaeus J. Buser, Olivia F. Boyd, Álvaro Cortés, Cassandra M. Donatelli, Matthew A. Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P. Summers  RESUMOO custo decrescente da obtenção de dados de Tomografia Computadorizada (TC) alimentou um esforço global para digitalizar espécimes depositados em museus. Esse esforço produziu uma grande variedade de modelos digitais 3 D com dados de anatomia, disponíveis para qualquer pessoa com acesso à Internet. As aplicações potenciais desses dados são amplas, desde a impressão 3 D para fins puramente educacionais, até o desenvolvimento de modelos biomecânicos de estruturas anatômicas altamente avançados. No entanto, enquanto praticamente qualquer pessoa pode acessar esses dados digitais, relativamente poucos têm o treinamento para obter facilmente um produto de interesse (por exemplo, uma visualização 3 D de uma estrutura anatômica). Aqui, apresentamos um tutorial baseado em um software gratuito de código aberto e multiplataforma para o processamento de dados de TC. Fornecemos instruções passo a passo que começam com a obtenção de dados de TC a partir de uma nova reconstrução ou num repositório de acesso aberto, e progredimos através da visualização, medição, marca de referência e construção de modelos digitais 3 D de estruturas anatômicas. Também incluímos instruções para dissecação digital, redução de dados e exportação de dados para uso em aplicativos posteriores, como os de impressoras 3 D. Por fim, fornecemos vídeos e tutoriais suplementares que demonstram como o tutorial facilita cinco aplicações específicas: medir características funcionais associadas à alimentação, isolar estruturas anatômicas digitalmente, isolar regiões de interesse usando segmentação semi-automática, coletar dados com ferramentas visuais simples, e reduzir o tamanho de arquivo e converter o tipo de arquivo do modelo 3 D.


FRANÇAIS (FRENCH)  Guide de l'historien de la nature à travers la galaxie TDM: instructions étape par étape pour la préparation et l'analyse de données tomodensitométrique (TDM) à l'aide d'un logiciel à accès ouvert multiplateforme Thaddaeus J. Buser, Olivia F. Boyd, Álvaro Cortés, Cassandra M. Donatelli, Matthew A. Kolmann, Jennifer L. Luparell, Janne A. Pfeiffenberger, Brian L. Sidlauskas, Adam P. Summers RÉSUMÉLe coût décroissant de l'acquisition de données tomodensitométriques (TDM) a alimenté un effort mondial pour numériser l'anatomie des spécimens de musée. Cet effort a produit une multitude de modèles d'anatomie numérique 3 D en accès libre accessibles à tous ceux qui ont accès à Internet. Les applications potentielles de ces données sont vastes, allant de l'impression 3 D à des fins purement pédagogiques au développement de modèles biomécaniques de structures anatomiques très avancés. Cependant, alors que pratiquement tout le monde peut accéder à ces données numériques, relativement peu ont la formation nécessaire pour en tirer facilement un produit intéressant (par exemple, une visualisation 3 D d'une structure anatomique). Ici, nous présentons un flux de travail basé sur un logiciel gratuit, à accès ouvert et multiplateforme pour le traitement des données TDM. Nous fournissons des instructions étape par étape qui commencent par l'acquisition de données TDM à partir d'une nouvelle reconstruction ou d'un référentiel en accès gratuit, et progressent à travers la visualisation, la mesure, le marquage et la construction de modèles numériques 3 D de structures anatomiques. Nous incluons également des instructions pour la dissection numérique, la réduction des données et l'exportation de données à utiliser dans des applications en aval telles que l'impression 3 D. Enfin, nous proposons des vidéos et des workflows supplémentaires qui montrent comment le workflow facilite cinq applications spécifiques: mesurer les traits fonctionnels associés à l'alimentation, isoler numériquement les structures anatomiques, isoler les régions d'intérêt à l'aide de la segmentation semi-automatisée, collecter des données avec des outils visuels simples, réduire la taille du fichier et convertir le type de fichierd'un modèle 3 D.

9.
Integr Org Biol ; 1(1): obz023, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33791537

RESUMO

Evolutionary transitions between habitats have been catalysts for some of the most stunning examples of adaptive diversification, with novel niches and new resources providing ecological opportunity for such radiations. In aquatic animals, transitions from saltwater to freshwater habitats are rare, but occur often enough that in the Neotropics for example, marine-derived fishes contribute noticeably to regional ichthyofaunal diversity. Here, we investigate how morphology has evolved in a group of temperate fishes that contain a marine to freshwater transition: the sculpins (Percomorpha; Cottoidea). We devised a novel method for classifying dietary niche and relating functional aspects of prey to their predators. Coupled with functional measurements of the jaw apparatus in cottoids, we explored whether freshwater sculpins have fundamentally changed their niche after invading freshwater (niche lability) or if they retain a niche similar to their marine cousins (niche conservatism). Freshwater sculpins exhibit both phylogeographical and ecological signals of phylogenetic niche conservatism, meaning that regardless of habitat, sculpins fill similar niche roles in either saltwater or freshwater. Rather than competition guiding niche conservatism in freshwater cottoids, we argue that strong intrinsic constraints on morphological and ecological evolution are at play, contra to other studies of diversification in marine-derived freshwater fishes. However, several intertidal and subtidal sculpins as well as several pelagic freshwater species from Lake Baikal show remarkable departures from the typical sculpin bauplan. Our method of prey categorization provides an explicit, quantitative means of classifying dietary niche for macroevolutionary studies, rather than relying on somewhat arbitrary means used in previous literature.


Tem Nicho, Viaja. Novos Meios de Associar Dieta e Ecomorfologia Revelam Conservadorismo de Nicho em Peixes Cotoides de Água Doce (Have Niche, Will Travel. New Means of Linking Diet and Ecomorphology Reveals Niche Conservatism in Freshwater Cottoid Fishes) Transições evolutivas entre habitats têm sido catalisadores de alguns dos mais impressionantes exemplos de diversificação adaptativa, com novos nichos e recursos proporcionando oportunidade ecológica para tais radiações. Em animais aquáticos, as transições de água salgada para habitats de água doce são raras, mas ocorrem com freqüência suficiente para que, nos Neotrópicos, por exemplo, os peixes marinhos contribuam notavelmente para a diversidade regional da ictiofauna. Aqui, nós investigamos como a morfologia evoluiu em um grupo de peixes temperados que contêm uma transição marinha para a água doce: os esculpentes (Percomorpha; Cottoidea). Nós concebemos um novo método para classificar o nicho alimentar e relacionar os aspectos funcionais das presas aos seus predadores. Juntamente com medidas funcionais do aparato de mandíbula em cotoides, exploramos se os esculpentes de água doce mudaram fundamentalmente seu nicho depois de invadi-la (labilidade de nicho) ou se eles mantêm um nicho semelhante aos seus primos marinhos (conservadorismo de nicho). Os esculpentes de água doce exibem sinais filogeográficos e ecológicos de conservadorismo filogenético de nicho, o que significa que, independente do habitat, os esculpentes preenchem papéis ecológicos semelhantes em água salgada ou doce. Mais do que a concorrência guiando o conservadorismo de nicho em cotoides de água doce, argumentamos que fortes restrições intrínsecas à evolução morfológica e ecológica estão em jogo, em contraste com outros estudos de diversificação em peixes de água doce derivados do mar. No entanto, vários esculpentes intertidais e subtidais, bem como várias espécies pelágicas de água doce do Lago Baikal, mostram notáveis desvios do típico bauplan dos esculpentes. Nosso método de categorização de presas fornece um modo explícito e quantitativo de classificar o nicho alimentar para estudos macroevolutivos ao invéz de depender de meios arbitrários usados na literatura anterior. Translated to Portuguese by G. Sobral (gabisobral@gmail.com).

10.
Integr Comp Biol ; 59(2): 394-409, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004486

RESUMO

Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolutionary integration (a tendency of structures to covary in size or shape across evolutionary history). Functional coupling, functional coordination, and evolutionary integration have each been proposed to limit morphological diversification to some extent. Yet teleosts show extraordinary cranial diversity, suggesting that there are mechanisms within some teleost clades that promote morphological diversification, even within the highly integrated suction feeding and gill ventilatory systems. To investigate this, we quantified evolutionary integration among four mechanical units associated with suction feeding and gill ventilation in a diverse clade of benthic, primarily suction-feeding fishes (Cottoidei; sculpins and relatives). We reconstructed cottoid phylogeny using molecular data from 108 species, and obtained 24 linear measurements of four mechanical units (jaws, hyoid, opercular bones, and branchiostegal rays) from micro-CT reconstructions of 44 cottoids and 1 outgroup taxon. We tested for evolutionary correlation and covariation among the four mechanical units using phylogenetically corrected principal component analysis to reduce the dimensionality of measurements for each unit, followed by correlating phylogenetically independent contrasts and computing phylogenetic generalized least squares models from the first principle component axis of each of the four mechanical units. The jaws, opercular bones, and branchiostegal rays show evolutionary integration, but the hyoid is not positively integrated with these units. To examine these results in an ecomorphological context, we used published ecological data in phylogenetic ANOVA models to demonstrate that the jaw is larger in fishes that eat elusive or grasping prey (e.g., prey that can easily escape or cling to the substrate) and that the hyoid is smaller in intertidal and hypoxia-tolerant sculpins. Within Cottoidei, the relatively independent evolution of the hyoid likely has reduced limitations on morphological evolution within the highly morphologically integrated suction feeding and gill ventilatory systems.


Assuntos
Comportamento Alimentar , Brânquias/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Perciformes/fisiologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Brânquias/fisiologia , Arcada Osseodentária/fisiologia , Perciformes/anatomia & histologia , Filogenia , Respiração , Crânio/anatomia & histologia , Sucção
11.
Zoology (Jena) ; 130: 19-29, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30502835

RESUMO

Video-based observations of voluntary movements reveal that six species of pleuronectid flatfishes use sequential portions of long-based dorsal and anal fins as "feet" (hereafter, fin-feet) to move on the substrate. All six species used a gait that we term "walking," which produced constant forward movement, and several of these species also used a second gait that we call "bounding" for intermittent movements over the substrate. We selected Pacific Sand Sole, Psettichthys melanostictus, and English Sole, Parophrys vetulus, for kinematic analyses of these two gaits. Psettichthys melanostictus consistently used walking for benthic locomotion; Parophrys vetulus primarily used a bounding gait. During forward walking, a fin ray swings up off the substrate, protracts and converges with neighboring fin rays to contribute to a fin-foot. The fin-foot pushes down on the substrate and rotates posteriorly by sequential recruitment of fin rays, a pattern known as a metachronal wave. As one fin-foot passes off the posterior end of the fin, a new fin-foot forms anteriorly. During bounding, undulations of the body and tail assist one or two waves of fin-feet, producing rapid but intermittent forward acceleration of the body. Flatfishes also use fin-feet to maneuver on the substrate. The Starry Flounder, Platichthys stellatus, performs near zero displacement rotation by running waves of fin-feet in opposing directions along the dorsal and anal fins. Although other teleosts use specialized pectoral fin rays for bottom walking (e.g., Sea Robins: Triglidae), the duplication of structures and patterns of movement in the median fins of flatfishes more closely resembles metachronal motions of millipede feet or the parapodia of polychaete worms. Sequential use of median fin rays in flatfishes resembles that of other teleosts that swim with elongate median fins, including Amiiformes, Gymnotiformes, and some Tetraodontiformes, but flatfishes offer a novel form of substrate locomotion based on dorsal and anal fins.


Assuntos
Linguados/fisiologia , Atividade Motora/fisiologia , Animais , Fenômenos Biomecânicos , Natação
12.
Curr Biol ; 27(10): R371-R375, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28535384

RESUMO

Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering.


Assuntos
Ecologia , Ecossistema , Invertebrados/fisiologia , Animais , Fenômenos Biomecânicos , Invertebrados/classificação , Filogenia
13.
J Morphol ; 243(2): 113-26, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10658196

RESUMO

The stingray family Myliobatidae contains five durophagous (hard prey specialist) genera and two planktivorous genera. A suite of morphological features makes it possible for the hard prey specialists to crush mollusks and crustaceans in their cartilaginous jaws. These include: 1) flat, pavement-like tooth plates set in an elastic dental ligament; 2) multiple layers of calcified cartilage on the surface of the jaws; 3) calcified struts running through the jaws; and 4) a lever system that amplifies the force of the jaw adductors. Examination of a range of taxa reveals that the presence of multiple layers of calcified cartilage, previously described from just a few species, is a plesiomorphy of Chondrichthyes. Calcified struts within the jaw, called "trabecular cartilage," are found only in the myliobatid genera, including the planktivorous Manta birostris. In the durophagous taxa, the struts are concentrated under the area where prey is crushed, thereby preventing local buckling of the jaws. Trabecular cartilage develops early in ontogeny, and does not appear to develop as a direct result of the stresses associated with feeding on hard prey. A "nutcracker" model of jaw function is proposed. In this model, the restricted gape, fused mandibular and palatoquadrate symphyses, and asynchronous contraction of the jaw adductors function to amplify the closing force by 2-4 times.


Assuntos
Osso e Ossos/fisiologia , Rajidae/fisiologia , Animais , Calcificação Fisiológica/fisiologia , Cartilagem/fisiologia , Embrião não Mamífero/fisiologia , Comportamento Alimentar/fisiologia , Arcada Osseodentária/fisiologia , Masculino , Modelos Biológicos , Filogenia , Rajidae/embriologia , Rajidae/crescimento & desenvolvimento , Dente/fisiologia
14.
J R Soc Interface ; 11(92): 20131053, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24430124

RESUMO

Organisms that are durophagous, hard prey consumers, have a diversity of tooth forms. To determine why we see this variation, we tested whether some tooth forms break shells better than others. We measured the force needed with three series of aluminium tooth models, which varied in concavity and the morphology of a stress concentrating cusp, to break a shell. We created functionally identical copies of two intertidal snail shells: the thicker shelled Nucella ostrina and the more ornamented Nucella lamellosa using a three-dimensional printer. In this way, we reduced variation in material properties between test shells, allowing us to test only the interaction of the experimental teeth with the two shell morphologies. We found that for all tooth shapes, thicker shells are harder to break than the thinner shells and that increased ornamentation has no discernible effect. Our results show that for both shell morphologies, domed and flat teeth break shells better than cupped teeth, and teeth with tall or skinny cusps break shells best. While our results indicate that there is an ideal tooth form for shell breaking, we do not see this shape in nature. This suggests a probable trade-off between tooth function and the structural integrity of the tooth.


Assuntos
Adaptação Biológica/fisiologia , Exoesqueleto/anatomia & histologia , Modelos Anatômicos , Dente/anatomia & histologia , Dente/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Força de Mordida , Força Compressiva , Caramujos/anatomia & histologia , Especificidade da Espécie
15.
Anat Rec (Hoboken) ; 297(4): 701-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443216

RESUMO

The four, evolutionarily independent, lineages of suspension feeding elasmobranchs have two types of branchial filters. The first is a robust, flattened filter pad akin to a colander (e.g., whale sharks, mantas and devil rays) while the second more closely resembles the comb-like gill raker structure found in bony fishes (e.g., basking and megamouth sharks). The structure and the presence of mucus on the filter elements will determine the mechanical function of the filter and subsequent particle transport. Using histology and scanning electron microscopy, we investigated the anatomy of the branchial filters in 12 of the 14 species of Chondrichthyian filter-feeding fishes. We hypothesized that mucus producing cells would be abundant along the filter epithelium and perform as a sticky mechanism to retain and transport particles; however, we found that only three species had mucus producing goblet cells. Two of these (Mobula kuhlii and Mobula tarapacana) also had branchial cilia, indicating sticky retention and transport. The remaining filter-feeding elasmobranchs did not have a sticky surface along the filter for particles to collect and instead must employ alternative mechanisms of filtration (e.g., direct sieving, inertial impaction or cross-flow). With the exception of basking sharks, the branchial filter is composed of a hyaline cartilage skeleton surrounded by a layer of highly organized connective tissue that may function as a support. Megamouth sharks and most of the mobulid rays have denticles along the surface of the filter, presumably to protect against damage from large particle impactions. Basking sharks have branchial filters that lack a cartilaginous core; instead they are composed entirely of smooth keratin.


Assuntos
Evolução Biológica , Elasmobrânquios/anatomia & histologia , Comportamento Alimentar/fisiologia , Filtração , Brânquias/anatomia & histologia , Animais , Elasmobrânquios/classificação , Elasmobrânquios/fisiologia , Brânquias/fisiologia , Microscopia Eletrônica de Varredura , Muco/fisiologia
16.
Zoology (Jena) ; 117(1): 19-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24388493

RESUMO

In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion.


Assuntos
Tubarões/anatomia & histologia , Tubarões/fisiologia , Coluna Vertebral/anatomia & histologia , Animais , Fenômenos Biomecânicos , Coluna Vertebral/fisiologia , Estresse Mecânico , Natação/fisiologia
17.
J Exp Biol ; 210(Pt 20): 3677-88, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17921168

RESUMO

Mantis shrimp (Stomatopoda) generate extremely rapid and forceful predatory strikes through a suite of structural modifications of their raptorial appendages. Here we examine the key morphological and kinematic components of the raptorial strike that amplify the power output of the underlying muscle contractions. Morphological analyses of joint mechanics are integrated with CT scans of mineralization patterns and kinematic analyses toward the goal of understanding the mechanical basis of linkage dynamics and strike performance. We test whether a four-bar linkage mechanism amplifies rotation in this system and find that the rotational amplification is approximately two times the input rotation, thereby amplifying the velocity and acceleration of the strike. The four-bar model is generally supported, although the observed kinematic transmission is lower than predicted by the four-bar model. The results of the morphological, kinematic and mechanical analyses suggest a multi-faceted mechanical system that integrates latches, linkages and lever arms and is powered by multiple sites of cuticular energy storage. Through reorganization of joint architecture and asymmetric distribution of mineralized cuticle, the mantis shrimp's raptorial appendage offers a remarkable example of how structural and mechanical modifications can yield power amplification sufficient to produce speeds and forces at the outer known limits of biological systems.


Assuntos
Decápodes/fisiologia , Articulações/fisiologia , Comportamento Predatório/fisiologia , Estruturas Animais/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Rotação , Tomografia Computadorizada por Raios X
18.
J Exp Biol ; 204(Pt 9): 1577-87, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11398747

RESUMO

The movement of water across the gills of non-ram-ventilating fishes involves the action of two pumps: a pressure pump that pushes water across the gills from the oropharyngeal to the parabranchial cavity, and a suction pump that draws water across the gills from the oropharyngeal into the parabranchial cavity. Together, the two are thought to keep water flowing continuously anteroposteriorly through the head of the respiring animal. However, there is evidence that the pressure and suction pumps do not always work in perfect phase in elasmobranch fishes, leading to periods of higher pressure in the parabranchial than in the oropharyngeal cavity. We investigated the existence and consequence of such pressure reversals in the hedgehog skate Leucoraja erinacea using pressure transducers, sonomicrometry and flow visualization including internal visualization using endoscopy. We noted four patterns of respiration in the experimental skates distinguished by the flow pattern at the three openings into the respiratory system: (1) in through the spiracle only, (2) in through the mouth + spiracle, (3) in through the mouth only, and (4) the mouth held open throughout the respiratory cycle. The first two were by far the dominant modes recorded from experimental animals. We determined that pressure reversals exist in the hedgehog skate, and that the gill bars adducted during such pressure reversals. Direct observation confirmed that these pressure reversals do correspond to pulsatile flow across the gills. During mouth+spiracle ventilation the flow completely reversed direction, flowing from the parabranchial chambers back across the gills and into the oropharyngeal cavity. Finally, we addressed the utility of sonomicrometry as a technique for determining kinematics in aquatic animals. Despite some problems involving errors inherent to the system design, we found the technique useful for complementing such techniques as pressure measurements and endoscopy.


Assuntos
Brânquias/fisiologia , Respiração , Rajidae/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Cinética , Masculino , Boca , Esforço Físico , Pressão , Rajidae/anatomia & histologia , Natação
19.
J Exp Zool ; 281(4): 280-7, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9658591

RESUMO

Studies of aquatic prey capture in vertebrates have demonstrated remarkable convergence in kinematics between diverse vertebrate taxa. When feeding in water, most vertebrates employ large-amplitude hyoid depression to expand the oral cavity and suck in water along with the prey. In contrast, vertebrates feeding on land exhibit little or no hyoid depression. In this study we compared the kinematics of terrestrial and aquatic prey capture within one species of turtle, Terrapene carolina, in order to determine whether an individual species can modulate the magnitude of hyoid depression between air and water. High-speed video (250 frames per second) showed that hyoid depression was over three times greater in aquatic than in terrestrial feedings, indicating that T. carolina is able to modulate hyoid depression magnitude depending on the medium in which feeding occurs. In addition, we observed medium-dependent modulation of hyoid depression in another turtle, Heosemys grandis, and large-amplitude hyoid depression during aquatic feeding in Kinosternon leucostomum, Platysternon megacephalum, and juvenile Chelydra serpentina. In all of these turtles, hyoid depression produced oral cavity expansion during aquatic feeding, but the earthworm prey were never sucked toward the predators. Prey were captured by neck extension (ram feeding), and we conclude that the function of hyoid depression during aquatic feeding in cryptodire turtles is to prevent the forward motion of the predator from pushing the prey away (compensatory suction). Aquatic feeding is probably the primitive condition for all extant turtles, and thus terrestrial feeding in T. carolina and other turtles is a secondarily derived characteristic. We conclude from this historical pattern that it is not appropriate to use extant turtles in attempts to reconstruct the terrestrial feeding mechanisms of primitive amniotes.


Assuntos
Evolução Biológica , Ingestão de Alimentos , Comportamento Predatório , Tartarugas/fisiologia , Animais , Geografia , Osso Hioide/anatomia & histologia , Osso Hioide/fisiologia , Especificidade da Espécie , Tartarugas/anatomia & histologia , Gravação em Vídeo/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA