Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(35): 21637-21646, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817566

RESUMO

Understanding the molecular mechanisms involved in the assembly of viruses is essential for discerning how viruses transmit from cell to cell and host to host. Although molecular aspects of assembly have been studied for many viruses, we still have little information about these events in real time. Enveloped viruses such as HIV that assemble at, and bud from, the plasma membrane have been studied in some detail using live cell fluorescence imaging techniques; however, these approaches provide little information about the real-time morphological changes that take place as viral components come together to form individual virus particles. Here we used correlative scanning ion conductance microscopy and fluorescence confocal microscopy to measure the topological changes, together with the recruitment of fluorescently labeled viral proteins such as Gag and Vpr, during the assembly and release of individual HIV virus-like particles (VLPs) from the top, nonadherent surfaces of living cells. We show that 1) labeling of viral proteins with green fluorescent protein affects particle formation, 2) the kinetics of particle assembly on different plasma membrane domains can vary, possibly as a consequence of differences in membrane biophysical properties, and 3) VLPs budding from the top, unimpeded surface of cells can reach full size in 20 s and disappear from the budding site in 0.5 to 3 min from the moment curvature is initially detected, significantly faster than has been previously reported.


Assuntos
HIV-1/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
2.
Transfusion ; 62(10): 1973-1983, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36066319

RESUMO

BACKGROUND: Transfusion Requirements in Cardiac Surgery III (TRICS III), a multi-center randomized controlled trial, demonstrated clinical non-inferiority for restrictive versus liberal RBC transfusion for patients undergoing cardiac surgery. However, it is uncertain if transfusion strategy affects long-term health-related quality of life (HRQOL). STUDY DESIGN AND METHODS: In this planned sub-study of Australian patients in TRICS III, we sought to determine the non-inferiority of restrictive versus liberal transfusion strategy on long-term HRQOL and to describe clinical outcomes 24 months postoperatively. The restrictive strategy involved transfusing RBCs when hemoglobin was <7.5 g/dl; the transfusion triggers in the liberal group were: <9.5 g/L intraoperatively, <9.5 g/L in intensive care, or <8.5 g/dl on the ward. HRQOL assessments were performed using the 36-item short form survey version 2 (SF-36v2). Primary outcome was non-inferiority of summary measures of SF-36v2 at 12 months, (non-inferiority margin: -0.25 effect size; restrictive minus liberal scores). Secondary outcomes included non-inferiority of HRQOL at 18 and 24 months. RESULTS: Six hundred seventeen Australian patients received allocated randomization; HRQOL data were available for 208/311 in restrictive and 217/306 in liberal group. After multiple imputation, non-inferiority of restrictive transfusion at 12 months was not demonstrated for HRQOL, and the estimates were directionally in favor of liberal transfusion. Non-inferiority also could not be concluded at 18 and 24 months. Sensitivity analyses supported these results. There were no differences in quality-adjusted life years or composite clinical outcomes up to 24 months after surgery. DISCUSSION: The non-inferiority of a restrictive compared to a liberal transfusion strategy was not established for long-term HRQOL in this dataset.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Transfusão de Eritrócitos , Austrália , Transfusão de Eritrócitos/métodos , Hemoglobinas/análise , Humanos , Qualidade de Vida
3.
Chemistry ; 27(7): 2523-2536, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33105523

RESUMO

Four-stranded G-quadruplex (G4) DNA is a non-canonical DNA topology that has been proposed to form in cells and play key roles in how the genome is read and used by the cellular machinery. Previously, a fluorescent triangulenium probe (DAOTA-M2) was used to visualise G4s in cellulo, thanks to its distinct fluorescence lifetimes when bound to different DNA topologies. Herein, the library of available triangulenium probes is expanded to explore how modifications to the fluorescent core of the molecule affect its photophysical characteristics, interaction with DNA and cellular localisation. The benzo-bridged and isopropyl-bridged diazatriangulenium dyes, BDATA-M2 and CDATA-M2 respectively, featuring ethyl-morpholino substituents, were synthesised and characterised. The interactions of these molecules with different DNA topologies were studied to determine their binding affinity, fluorescence enhancement and fluorescence lifetime response. Finally, the cellular uptake and localisation of these optical probes were investigated. Whilst structural modifications to the triangulenium core only slightly alter the binding affinity to DNA, BDATA-M2 and CDATA-M2 cannot distinguish between DNA topologies through their fluorescence lifetime. It is argued theoretically and experimentally that this is due to reduced effectiveness of photoinduced electron transfer (PET) quenching. This work presents valuable new evidence into the critical role of PET quenching when using the fluorescence lifetime of triangulenium dyes to discriminate G4 DNA from duplex DNA, highlighting the importance of fine tuning redox and spectral properties when developing new triangulenium-based G4 probes.


Assuntos
DNA/análise , DNA/química , Fluorescência , Corantes Fluorescentes/química , Quadruplex G , Transporte de Elétrons , Corantes Fluorescentes/análise , Sondas Moleculares/análise , Sondas Moleculares/química
4.
Nano Lett ; 20(10): 7375-7381, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32866016

RESUMO

Enzyme-responsive supramolecular peptide biomaterials have attracted growing interest for disease diagnostics and treatments. However, it remains unclear whether enzymes target the peptide assemblies or dissociated peptide monomers. To gain further insight into the degradation mechanism of supramolecular peptide amphiphile (PA) nanofibers, cathepsin B with both exopeptidase and endopeptidase activities was exploited here for degradation studies. Hydrolysis was found to occur directly on the PA nanofibers as only surface amino acid residues were cleaved. The number of cleaved residues and the degradation efficiency was observed to be negatively correlated with the internal viscosity of the PA nanofibers, quantified to be between 200-800 cP (liquid phase) using fluorescence lifetime imaging microscopy combined with an environmentally sensitive molecular rotor, BODIPY-C10. These findings enhance our understanding on the enzymatic degradation of supramolecular PA nanofibers and have important implications for the development of PA probes for the real-time monitoring of disease-related enzymes.


Assuntos
Nanofibras , Hidrólise , Substâncias Macromoleculares , Peptídeos , Viscosidade
5.
Angew Chem Int Ed Engl ; 60(19): 10928-10934, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33577711

RESUMO

The efficacy of many drugs can be limited by undesirable properties, such as poor aqueous solubility, low bioavailability, and "off-target" interactions. To combat this, various drug carriers have been investigated to enhance the pharmacological profile of therapeutic agents. In this work, we demonstrate the use of mechanical protection to "cage" a DNA-targeting metallodrug within a photodegradable rotaxane. More specifically, we report the synthesis of rotaxanes incorporating as a stoppering unit a known G-quadruplex DNA binder, namely a PtII -salphen complex. This compound cannot interact with DNA when it is part of the mechanically interlocked assembly. The second rotaxane stopper can be cleaved by either light or an esterase, releasing the PtII -salphen complex. This system shows enhanced cell permeability and limited cytotoxicity within osteosarcoma cells compared to the free drug. Light activation leads to a dramatic increase in cytotoxicity, arising from the translocation of PtII -salphen to the nucleus and its binding to DNA.


Assuntos
DNA/efeitos dos fármacos , Rotaxanos/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Humanos , Estrutura Molecular , Rotaxanos/síntese química , Bibliotecas de Moléculas Pequenas/química
6.
Angew Chem Int Ed Engl ; 60(43): 23148-23153, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34379368

RESUMO

Copper is an essential trace element in living organisms with its levels and localisation being carefully managed by the cellular machinery. However, if misregulated, deficiency or excess of copper ions can lead to several diseases. Therefore, it is important to have reliable methods to detect, monitor and visualise this metal in cells. Herein we report a new optical probe based on BODIPY, which shows a switch-on in its fluorescence intensity upon binding to copper(I), but not in the presence of high concentration of other physiologically relevant metal ions. More interestingly, binding to copper(I) leads to significant changes in the fluorescence lifetime of the new probe, which can be used to visualize copper(I) pools in lysosomes of live cells via fluorescence lifetime imaging microscopy (FLIM).


Assuntos
Cobre/análise , Compostos de Boro/química , Compostos de Boro/toxicidade , Linhagem Celular Tumoral , Cobre/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Humanos , Lisossomos/química , Microscopia de Fluorescência/métodos
7.
BMC Genomics ; 21(1): 396, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513102

RESUMO

BACKGROUND: The severity and frequency of drought has increased around the globe, creating challenges in ensuring food security for a growing world population. As a consequence, improving water use efficiency by crops has become an important objective for crop improvement. Some wild crop relatives have adapted to extreme osmotic stresses and can provide valuable insights into traits and genetic signatures that can guide efforts to improve crop tolerance to water deficits. Eutrema salsugineum, a close relative of many cruciferous crops, is a halophytic plant and extremophyte model for abiotic stress research. RESULTS: Using comparative transcriptomics, we show that two E. salsugineum ecotypes display significantly different transcriptional responses towards a two-stage drought treatment. Even before visibly wilting, water deficit led to the differential expression of almost 1,100 genes for an ecotype from the semi-arid, sub-arctic Yukon, Canada, but only 63 genes for an ecotype from the semi-tropical, monsoonal, Shandong, China. After recovery and a second drought treatment, about 5,000 differentially expressed genes were detected in Shandong plants versus 1,900 genes in Yukon plants. Only 13 genes displayed similar drought-responsive patterns for both ecotypes. We detected 1,007 long non-protein coding RNAs (lncRNAs), 8% were only expressed in stress-treated plants, a surprising outcome given the documented association between lncRNA expression and stress. Co-expression network analysis of the transcriptomes identified eight gene clusters where at least half of the genes in each cluster were differentially expressed. While many gene clusters were correlated to drought treatments, only a single cluster significantly correlated to drought exposure in both ecotypes. CONCLUSION: Extensive, ecotype-specific transcriptional reprogramming with drought was unexpected given that both ecotypes are adapted to saline habitats providing persistent exposure to osmotic stress. This ecotype-specific response would have escaped notice had we used a single exposure to water deficit. Finally, the apparent capacity to improve tolerance and growth after a drought episode represents an important adaptive trait for a plant that thrives under semi-arid Yukon conditions, and may be similarly advantageous for crop species experiencing stresses attributed to climate change.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Brassicaceae/genética , Canadá , Desidratação , Ecótipo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA de Plantas/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Análise de Sequência de RNA , Estresse Fisiológico
8.
Planta ; 251(1): 18, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31781937

RESUMO

MAIN CONCLUSION: The extremophyte Eutrema salsugineum (Yukon ecotype) has adapted to an environment low in available phosphate through metabolic and root-associated traits that enables it to efficiently retrieve, use, and recycle phosphorus. Efficient phosphate (Pi) use by plants would increase crop productivity under Pi-limiting conditions and reduce our reliance on Pi applied as fertilizer. An ecotype of Eutrema salsugineum originating from the Yukon, Canada, shows no evidence of decreased relative growth rate or biomass under low Pi conditions and, as such, offers a promising model for identifying mechanisms to improve Pi use by crops. We evaluated traits associated with efficient Pi use by Eutrema (Yukon ecotype) seedlings and 4-week-old plants, including acquisition, remobilization, and the operation of metabolic bypasses. Relative to Arabidopsis, Eutrema was slower to remobilize phosphorus (P) from senescing leaves, primary and lateral roots showed a lower capacity for rhizosphere acidification, and root acid phosphatase activity was more broadly distributed and not Pi responsive. Both species produced long root hairs on low Pi media, whereas Arabidopsis root hairs were well endowed with phosphatase activity. This capacity was largely absent in Eutrema. In contrast to Arabidopsis, maximal in vitro rates of pyrophosphate-dependent phosphofructokinase and phosphoenolpyruvate carboxylase activities were not responsive to low Pi conditions suggesting that Eutrema has a constitutive and likely preferential capacity to use glycolytic bypass enzymes. Rhizosphere acidification, exudation of acid phosphatases, and rapid remobilization of leaf P are unlikely strategies used by Eutrema for coping with low Pi. Rather, equipping an entire root system for Pi acquisition and utilizing a metabolic strategy suited to deficient Pi conditions offer better explanations for how Eutrema has adapted to thrive on alkaline, highly saline soil that is naturally low in available Pi.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Brassicaceae/metabolismo , Brassicaceae/fisiologia , Fosfatos/farmacologia , Raízes de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Brassicaceae/efeitos dos fármacos , Brassicaceae/enzimologia , Escuridão , Glicólise/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Rizosfera , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Solo
9.
Plant Cell Environ ; 39(8): 1818-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27038434

RESUMO

Eutrema salsugineum, a halophytic relative of Arabidopsis thaliana, was subjected to varying phosphate (Pi) treatments. Arabidopsis seedlings grown on 0.05 mm Pi displayed shortened primary roots, higher lateral root density and reduced shoot biomass allocation relative to those on 0.5 mm Pi, whereas Eutrema seedlings showed no difference in lateral root density and shoot biomass allocation. While a low Fe concentration mitigated the Pi deficiency response for Arabidopsis, Eutrema root architecture was unaltered, but adding NaCl increased Eutrema lateral root density almost 2-fold. Eutrema and Arabidopsis plants grown on soil without added Pi for 4 weeks had low shoot and root Pi content. Pi-deprived, soil-grown Arabidopsis plants were stunted with senescing older leaves, whereas Eutrema plants were visually indistinguishable from 2.5 mm Pi-supplemented plants. Genes associated with Pi starvation were analysed by RT-qPCR. EsIPS2, EsPHT1;4 and EsPAP17 showed up-regulated expression in Pi-deprived Eutrema plants, while EsPHR1, EsWRKY75 and EsRNS1 showed no induction. Absolute quantification of transcripts indicated that PHR1, WRKY75 and RNS1 were expressed at higher levels in Eutrema plants relative to those in Arabidopsis regardless of external Pi. The low phenotypic plasticity Eutrema displays to Pi supply is consistent with adaptation to chronic Pi deprivation in its extreme natural habitat.


Assuntos
Aclimatação , Brassicaceae/metabolismo , Extremófilos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/deficiência , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Genes de Plantas , Ferro/metabolismo , Fenótipo , Salinidade , Plântula/crescimento & desenvolvimento
10.
Inorg Chem ; 55(2): 527-36, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26605700

RESUMO

The synthesis, photophysics, and photochemistry of a linked dyad ([Re]-[NiFe2]) containing an analogue ([NiFe2]) of the active site of [NiFe] hydrogenase, covalently bound to a Re-diimine photosensitizer ([Re]), are described. Following excitation, the mechanisms of electron transfer involving the [Re] and [NiFe2] centers and the resulting decomposition were investigated. Excitation of the [Re] center results in the population of a diimine-based metal-to-ligand charge transfer excited state. Reductive quenching by NEt3 produces the radically reduced form of [Re], [Re](-) (kq = 1.4 ± 0.1 × 10(7) M(-1) s(-1)). Once formed, [Re](-) reduces the [NiFe2] center to [NiFe2](-), and this reduction was followed using time-resolved infrared spectroscopy. The concentration dependence of the electron transfer rate constants suggests that both inter- and intramolecular electron transfer pathways are involved, and the rate constants for these processes have been estimated (kinter = 5.9 ± 0.7 × 10(8) M(-1) s(-1), kintra = 1.5 ± 0.1 × 10(5) s(-1)). For the analogous bimolecular system, only intermolecular electron transfer could be observed (kinter = 3.8 ± 0.5 × 10(9) M(-1) s(-1)). Fourier transform infrared spectroscopic studies confirms that decomposition of the dyad occurs upon prolonged photolysis, and this appears to be a major factor for the low activity of the system toward H2 production in acidic conditions.


Assuntos
Biomimética , Hidrogenase/síntese química , Fármacos Fotossensibilizantes/química , Rênio/química , Aminas/química , Eletroquímica , Hidrogenase/química , Oxirredução , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
11.
Inorg Chem ; 53(9): 4430-9, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24749646

RESUMO

Photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the (3)MLCT excited state of the photosensitizer by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS(•-), and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a(•-) and 1b(•-)) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a(•-) was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a(•-) is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b(•-) two of the carbonyl groups bridge the Fe centers, consistent with the peak observed at 1714 cm(-1) in the FTIR spectrum for 1b(•-) in CH3CN, assigned to a ν(CO) stretching vibration. Formation of 1a(•-) and 1b(•-) and production of H2 was studied in CH3CN, DMF, and CH2Cl2. Although the more catalytically active species (1a(•-) or 1b(•-)) could not be determined, photocatalysis was observed only in CH3CN and DMF.


Assuntos
Hidrogênio/química , Hidrogenase/química , Processos Fotoquímicos , Eletroquímica , Espectroscopia de Infravermelho com Transformada de Fourier
12.
BMC Genomics ; 14: 578, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23984645

RESUMO

BACKGROUND: The investigation of extremophile plant species growing in their natural environment offers certain advantages, chiefly that plants adapted to severe habitats have a repertoire of stress tolerance genes that are regulated to maximize plant performance under physiologically challenging conditions. Accordingly, transcriptome sequencing offers a powerful approach to address questions concerning the influence of natural habitat on the physiology of an organism. We used RNA sequencing of Eutrema salsugineum, an extremophile relative of Arabidopsis thaliana, to investigate the extent to which genetic variation and controlled versus natural environments contribute to differences between transcript profiles. RESULTS: Using 10 million cDNA reads, we compared transcriptomes from two natural Eutrema accessions (originating from Yukon Territory, Canada and Shandong Province, China) grown under controlled conditions in cabinets and those from Yukon plants collected at a Yukon field site. We assessed the genetic heterogeneity between individuals using single-nucleotide polymorphisms (SNPs) and the expression patterns of 27,016 genes. Over 39,000 SNPs distinguish the Yukon from the Shandong accessions but only 4,475 SNPs differentiated transcriptomes of Yukon field plants from an inbred Yukon line. We found 2,989 genes that were differentially expressed between the three sample groups and multivariate statistical analyses showed that transcriptomes of individual plants from a Yukon field site were as reproducible as those from inbred plants grown under controlled conditions. Predicted functions based upon gene ontology classifications show that the transcriptomes of field plants were enriched by the differential expression of light- and stress-related genes, an observation consistent with the habitat where the plants were found. CONCLUSION: Our expectation that comparative RNA-Seq analysis of transcriptomes from plants originating in natural habitats would be confounded by uncontrolled genetic and environmental factors was not borne out. Moreover, the transcriptome data shows little genetic variation between laboratory Yukon Eutrema plants and those found at a field site. Transcriptomes were reproducible and biological associations meaningful whether plants were grown in cabinets or found in the field. Thus RNA-Seq is a valuable approach to study native plants in natural environments and this technology can be exploited to discover new gene targets for improved crop performance under adverse conditions.


Assuntos
Brassicaceae/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Adaptação Fisiológica , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Heterozigoto , Anotação de Sequência Molecular , Análise Multivariada , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Análise de Sequência de RNA
13.
BMC Plant Biol ; 12: 175, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23025749

RESUMO

BACKGROUND: Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. RESULTS: To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that Thellungiella shows metabolic plasticity in response to environmental stress and that resource availability can influence the expression of stress tolerance traits under field conditions. CONCLUSION: Comparisons between Thellungiella plants responding to stress in cabinets and in their natural habitats showed differences but also overlap between transcript and metabolite profiles. The traits in common offer potential targets for improving crops that must respond appropriately to multiple, concurrent stresses.


Assuntos
Brassicaceae/genética , Metaboloma , Fenótipo , Estresse Fisiológico , Transcriptoma , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/metabolismo , Secas , Ecossistema , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Prolina/metabolismo , Salinidade , Cloreto de Sódio/metabolismo , Solo/química , Yukon
17.
J Biol Chem ; 285(38): 29147-55, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20650897

RESUMO

Three sequential methylations of phosphoethanolamine (PEA) are required for the synthesis of phosphocholine (PCho) in plants. A cDNA encoding an N-methyltransferase that catalyzes the last two methylation steps was cloned from Arabidopsis by heterologous complementation of a Saccharomyces cerevisiae cho2, opi3 mutant. The cDNA encodes phosphomethylethanolamine N-methyltransferase (PMEAMT), a polypeptide of 475 amino acids that is organized as two tandem methyltransferase domains. PMEAMT shows 87% amino acid identity to a related enzyme, phosphoethanolamine N-methyltransferase, an enzyme in plants that catalyzes all three methylations of PEA to PCho. PMEAMT cannot use PEA as a substrate, but assays using phosphomethylethanolamine as a substrate result in both phosphodimethylethanolamine and PCho as products. PMEAMT is inhibited by the reaction products PCho and S-adenosyl-l-homocysteine, a property reported for phosphoethanolamine N-methyltransferase from various plants. An Arabidopsis mutant with a T-DNA insertion associated with locus At1g48600 showed no transcripts encoding PMEAMT. Shotgun lipidomic analyses of leaves of atpmeamt and wild-type plants generated phospholipid profiles showing the content of phosphatidylmethylethanolamine to be altered relative to wild type with the content of a 34:3 lipid molecular species 2-fold higher in mutant plants. In S. cerevisiae, an increase in PtdMEA in membranes is associated with reduced viability. This raises a question regarding the role of PMEAMT in plants and whether it serves to prevent the accumulation of PtdMEA to potentially deleterious levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Colina/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfolipídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolaminas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Chem Sci ; 12(43): 14624-14634, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34881015

RESUMO

The important role that G-quadruplex DNA (G4 DNA) structures play in regulating biological processes is becoming widely recognised. These structures have also been proposed to be attractive drug targets. Therefore, there has been significant interest in developing small molecules that can selectively bind to G4 DNA over other topologies. In this paper we investigate the interaction between DNA and helical compounds (helicenes) based on a central carbocation trisubstituted with aromatic rings. We show that the non-planar structure of these helicenes results in a significantly reduced affinity for dsDNA when compared to their planar analogues, whilst maintaining a high affinity for G4 DNA. Additionally, the right- and left-handed enantiomers of one of these helicenes recognise the chiral DNA environments of G4 and dsDNA differently. We show that upon DNA binding the helicenes display a fluorescence switch-on effect, which we have successfully used for cellular imaging in live and fixed U2OS cells, staining mitochondria and the nucleus, respectively.

19.
Nat Commun ; 12(1): 162, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420085

RESUMO

Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability in live cells. Reduction of FancJ and RTEL1 expression in mammalian cells increases the DAOTA-M2 lifetime and therefore suggests an increased number of G4s in these cells, implying that FancJ and RTEL1 play a role in resolving G4 structures in cellulo.


Assuntos
DNA/metabolismo , Quadruplex G , Microscopia Intravital/métodos , Imagem Molecular/métodos , Animais , Linhagem Celular Tumoral , DNA/química , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos , Corantes Fluorescentes/química , Técnicas de Silenciamento de Genes , Humanos , Indóis/química , Camundongos , Microscopia de Fluorescência/métodos , RNA Helicases/genética , RNA Helicases/metabolismo
20.
Sci Rep ; 10(1): 18450, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116198

RESUMO

Phosphatidylinositol phosphates (PIPs) are membrane phospholipids that play crucial roles in a wide range of cellular processes. Their function is dictated by the number and positions of the phosphate groups in the inositol ring (with seven different PIPs being active in the cell). Therefore, there is significant interest in developing small-molecule receptors that can bind selectively to these species and in doing so affect their cellular function or be the basis for molecular probes. However, to date there are very few examples of such molecular receptors. Towards this aim, herein we report a novel tripodal molecule that acts as receptor for mono- and bis-phosphorylated PIPs in a cell free environment. To assess their affinity to PIPs we have developed a new cell free assay based on the ability of the receptor to prevent alkaline phosphatase from hydrolysing these substrates. The new receptor displays selectivity towards two out of the seven PIPs, namely PI(3)P and PI(3,4)P2. To rationalise these results, a DFT computational study was performed which corroborated the experimental results and provided insight into the host-guest binding mode.


Assuntos
Fosfatos de Fosfatidilinositol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA