Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Small ; : e2403593, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180252

RESUMO

Confronting the impending exhaustion of traditional energy, it is urgent to devise and deploy sustainable clean energy alternatives. Osmotic energy contained in the salinity gradient of the sea-river interface is an innovative, abundant, clean, and renewable osmotic energy that has garnered considerable attention in recent years. Inspired by the impressively intelligent ion channels in nature, the developed angstrom-scale 2D channels with simple fabrication process, outstanding design flexibility, and substantial charge density exhibit excellent energy conversion performance, opening up a new era for osmotic energy harvesting. However, this attractive research field remains fraught with numerous challenges, particularly due to the complexities associated with the regulation at angstrom scale. In this review, the latest advancements in the design of angstrom-scale 2D channels are primarily outlined for harvesting osmotic energy. Drawing upon the analytical framework of osmotic power generation mechanisms and the insights gleaned from the biomimetic intelligent devices, the design strategies are highlighted for high-performance angstrom channels in terms of structure, functionalization, and application, with a particular emphasis on ion selectivity and ion transport resistance. Finally, current challenges and future prospects are discussed to anticipate the emergence of more anomalous properties and disruptive technologies that can promote large-scale power generation.

2.
Langmuir ; 40(37): 19830-19838, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39231294

RESUMO

Hydrogel-based flexible electronics have been widely investigated in electronic skin and wearable sensors. However, the challenge of matching the modulus between the hydrogel and the electrode underscores the critical importance of flexibility of the electrode. Gallium-based liquid metals (GaLMs) are ideal electrode materials for flexible substrates due to their high conductivity and stretchability. However, the ease of aggregation and lack of adhesion happen when patterning GaLMs on hydrogel surfaces. This work proposes a direct ink writing (DIW) of highly oxidized EGaIn (hoEGaIn) on an acrylamide (AAm) hydrogel. The interface is modulated by increasing the oxide content to improve the printability. Compared to EGaIn with an oxide layer, hoEGaIn displays a lower surface tension dropped by about 28.5%, higher adhesion (an increase of about 24.4%), and lower contact angles. These optimized interface properties significantly improve its wettability and DIW stability on AAm hydrogel substrates. A minimum line width of 65 µm is obtained by regulating DIW parameters. Meanwhile, hoEGaIn exhibits impressive multisubstrate printability and conductivity of up to 2.22 × 106 S·m-1. Furthermore, a cantilever beam strain sensor is manufactured by DIW hoEGaIn on an AAm hydrogel, which exhibits fast response and recovery, excellent dynamic response, and stability. This study demonstrates a potential method for the DIW of GaLMs on hydrogels.

3.
Langmuir ; 40(9): 4709-4718, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38388349

RESUMO

Constructing three-dimensional (3D) aligned nanofiber scaffolds is significant for the development of cardiac tissue engineering, which is promising in the field of drug discovery and disease mechanism study. However, the current nanofiber scaffold preparation strategy, which mainly includes manual assembly and hybrid 3D printing, faces the challenge of integrated fabrication of morphology-controllable nanofibers due to its cross-scale structural feature. In this research, a trench-guided electrospinning (ES) strategy was proposed to directly fabricate 3D aligned nanofiber scaffolds with alternative ES and a direct ink writing (DIW) process. The electric field effect of DIW poly(dimethylsiloxane) (PDMS) side walls on guiding whipping ES nanofibers was investigated to construct trench design rules. It was found that the width/height ratio of trenches greatly affected the nanofiber alignment, and the trench width/height ratio of 1.5 provided the nanofiber alignment degree over 60%. As a proof of principle, 3D nanofiber scaffolds with controllable porosity (60-80%) and alignment (30-60%) were fabricated. The effect of the scaffolds was verified by culturing human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in the uniform 3D distribution of aligned hiPSC-CMs with ∼1000 µm thickness. Therefore, this printing strategy shows great potential for the efficient engineered tissue construction.


Assuntos
Nanofibras , Engenharia Tecidual , Humanos , Nanofibras/química , Alicerces Teciduais/química , Miócitos Cardíacos
4.
Small ; 19(5): e2206628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446727

RESUMO

The in situ free carbon generated in polymer-derived ceramics (PDCs) plays a crucial role in their unique microstructure and resultant properties. This study advances a new phenomenon of graphitization of PDCs. Specifically, whether in micro-/nanoscale films or millimeter-scale bulks, the surface/interface radically changes the fate of carbon and the evolution of PDC nanodomains, promotes the graphitization of carbon, and evolves a free carbon enriched layer in the near-surface/interface region. Affected by the enrichment behavior of free carbon in the near-surface/interface region, PDCs exhibit highly abnormal properties such as the skin behavior and edge effect of the current. The current intensity in the near-surface/interface region of PDCs is orders of magnitude higher than that in its interior. Ultrahigh conductivity of up to 14.47 S cm-1 is obtained under the action of the interface and surface, which is 5-8 orders of magnitude higher than that of the bulk prepared under the same conditions. Such surface/interface interactions are of interest for the regulation of free carbon and its resultant properties, which are the core of PDC applications. Finally, the first PDC thin-film strain gauge that can survive a butane flame with a high temperature of up to ≈1300 °C is fabricated.

5.
Biochem Biophys Res Commun ; 552: 84-90, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33743352

RESUMO

BACKGROUND: Angiotensin II (Ang II), an important component of the renin-angiotensin system (RAS), plays a critical role in the pathogenesis of cardiovascular disorders. In addition, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been considered as a promising platform for studying personalized medicine for heart diseases. However, whether Ang II can induce the apoptosis of hiPSC-CMs is not known. METHODS: In this study, we treated hiPSC-CMs with different concentrations of Ang II [0 nM (vehicle as a control), 1 nM, 10 nM, 100 nM, 1 µM, 10 µM, 100 µM, and 1 mM] for various time periods (24 h, 48 h, 6 days, and 10 days) and analyzed the viability and apoptosis of hiPSC-CMs. RESULTS: We found that treatment with 1 mM Ang II for 10 days reduced the viability of hiPSC-CMs by 41% (p = 2.073E-08) and increased apoptosis by 2.74-fold, compared to the control group (p = 6.248E-12). MYOG, which encodes the muscle-specific transcription factor myogenin, was also identified as an apoptosis-suppressor gene in Ang II-treated hiPSC-CMs. Ectopic MYOG expression decreased the apoptosis and increased the viability of Ang II-treated hiPSC-CMs. Further analysis of the RNA sequencing (RNA-seq) data illustrated that myogenin ameliorated Ang II-induced apoptosis of hiPSC-CMs by downregulating the expression of proinflammatory genes. CONCLUSION: Our findings suggest that Ang II induces the apoptosis of hiPSC-CMs and that myogenin attenuates Ang II-induced apoptosis.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miogenina/genética , Apoptose/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miogenina/metabolismo , Fatores de Tempo
6.
Langmuir ; 34(45): 13788-13793, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30354156

RESUMO

Gap electrospinning is a facile technique to produce aligned nanofibers useful for many applications, but its potential has not yet been fully exploited in nature, leading to the fiber length still limited to several tens of centimeters at present. In this work, we report a breakthrough in the production of well-aligned nanofibers with record length and efficiency. Using a suitable poly(vinylidene fluoride) solution and a pair of parallel plates that are substrate-free and negatively connected, we demonstrate the ease of this technique to prepare length-controllable aligned fibers in a wide range (≤125 cm). Because of the crucial roles of both the jet whipping instability that continuously drives the jet to span across the static plates and the negative voltage on the plates that effectively attracts the positively charged jet, the jet can be made to move back and forth over the superlarge gap to form ultralong aligned nanofibers. By introducing a projection method, we also redefine fiber alignment in a broader sense. This work is believed to provide a new insight into the nature of gap electrospinning, which will greatly expand the versatility of this technique to create devices for a myriad of applications.

7.
Sensors (Basel) ; 18(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551579

RESUMO

Ammonia gas sensors are very essential in many industries and everyday life. However, their complicated fabrication process, severe environmental fabrication requirements and desorption of residual ammonia molecules result in high cost and hinder their market acceptance. Here, laser direct writing is used to fabricate three parallel porous 3D graphene lines on a polyimide (PI) tape to simply construct an ammonia gas sensor. The middle one works as an ammonia sensing element and the other two on both sides work as heaters to improve the desorption performance of the sensing element to ammonia gas molecules. The graphene lines were characterized by scanning electron microscopy and Raman spectroscopy. The response and recovery time of the sensor without heating are 214 s and 222 s with a sensitivity of 0.087% ppm-1 for sensing 75 ppm ammonia gas, respectively. The experimental results prove that under the optimized heating temperature of about 70 °C the heaters successfully help implement complete desorption of residual NH3 showing a good sensitivity and cyclic stability.

8.
Opt Lett ; 42(24): 5106-5109, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240148

RESUMO

A simple fabrication method of micro/nano-optical fibers (MNOFs) based on near-field melt electrospinning (NMES) is proposed in this Letter. Single fibers with diameters ranging from 500 nm to 6 µm were directly written by near-field electrospinning of molten poly(methyl methacrylate) (PMMA). The morphology and transmission characteristics of single PMMA MNOFs were experimentally measured. The results showed that PMMA MNOFs have the advantages of smooth surfaces, uniform diameters, and low loss. As an example of one-step fabrication for MNOF devices, a planar helical MNOF structure was directly written and optically characterized. To demonstrate the versatility of the NMES process, in combination with the microfluidic technique, a liquid refractive index-sensing chip was fabricated and tested. Our results demonstrate that the proposed fabrication method has strong potential in the direct writing of patterned optical devices and heterogeneous integrated devices.

9.
Nanotechnology ; 27(31): 31LT01, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27324992

RESUMO

The rapid production and accurate deposition of graphene composites are first integrated into one process, due to the strong interaction between the polymer bond with sodium dodecyl sulfonate (SDS) and graphene. It is demonstrated that tension-shear exfoliation in high viscosity fluid may get a higher graphene production rate than in N-methyl-pyrrolidone. In addition, the micro-scale patterns of graphene nanomaterials produced by this method show high electrical conductivity and superior sensitivity to pressure due to their porous structure.

10.
Sensors (Basel) ; 16(2): 158, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26821031

RESUMO

A novel structure of the resonant pressure sensor is presented in this paper, which tactfully employs intercoupling between dual pressure-sensing diaphragms and a laterally driven resonant strain gauge. After the resonant pressure sensor principle is introduced, the coupling mechanism of the diaphragms and resonator is analyzed and the frequency equation of the resonator based on the triangle geometry theory is developed for this new coupling structure. The finite element (FE) simulation results match the theoretical analysis over the full scale of the device. This pressure sensor was first fabricated by dry/wet etching and thermal silicon bonding, followed by vacuum-packaging using anodic bonding technology. The test maximum error of the fabricated sensor is 0.0310%F.S. (full scale) in the range of 30 to 190 kPa, its pressure sensitivity is negative and exceeding 8 Hz/kPa, and its Q-factor reaches 20,000 after wafer vacuum-packaging. A novel resonant pressure sensor with high accuracy is presented in this paper.

11.
Talanta ; 276: 126261, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761659

RESUMO

Intracellular calcium ion detection is of great significance for understanding the cell metabolism and signaling pathways. Most of the current ionic sensors either face the size issue or sensitivity limit for the intracellular solution with high background ion concentrations. In this paper, we proposed a calmodulin (CaM) functionalized nanopore for sensitive and selective Ca2+ detection inside living cells. A salt gradient was created when the nanopore sensor filled with a low concentration electrolyte was in contact with a high background concentration solution, which enhanced the surface charge-based detection sensitivity. The nanopore sensor showed a 10 × sensitivity enhancement by application of a 100-fold salt gradient, and a detection limit of sub nM. The sensor had a wide detection range from 1 nM to 1 mM, and allowed for quick calcium ion quantification in a few seconds. The sensor was demonstrated for intracellular Ca2+ detection in A549 cells in response to ionomycin.


Assuntos
Cálcio , Calmodulina , Nanoporos , Humanos , Cálcio/análise , Calmodulina/análise , Calmodulina/química , Calmodulina/metabolismo , Células A549 , Limite de Detecção , Técnicas Biossensoriais/métodos , Ionomicina/farmacologia
12.
Micromachines (Basel) ; 15(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39203689

RESUMO

Passive fluid control has mostly been used for valves, pumps, and mixers in microfluidic systems. The basic principle is to generate localized losses in special channel structures, such as branches, grooves, or spirals. The flow field in two-dimensional space can be easily calculated using the typical Stokes formula, but it is challenging in three-dimensional space. Moreover, the flow field with periodic variable cross-sections channeled of polyhedral units has been neglected in this research field due to previous limitations in manufacturing technology. With the continuous progress of 3D printing technology, the field of microfluidic devices ushered in a new era of manufacturing three-dimensional irregular channels. In this study, we present finite analysis results for a periodic nodular-like channel. The experiments involve variations in the Reynold number (Re), periodic frequency, and comparative analyses with conventional structures. The findings indicate that this variable 3D cross-section structure can readily achieve performance comparable to other passive fluid control methods in valve applications. A 3D model of the periodic tetrahedron channel was fabricated using 3D printing to validate these conclusions. This research has the potential to significantly enhance the performance of passive fluid control units that have long been constrained by manufacturing dimensions.

13.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124456

RESUMO

Direct ink writing (DIW) of high-temperature thin-film sensors holds significant potential for monitoring extreme environments. However, existing high-temperature inks face a trade-off between cost and performance. This study proposes a SiCN/RuO2/TiB2 composite ceramic ink. The added TiB2, after annealing in a high-temperature atmospheric environment, forms B2O3 glass, which synergizes with the SiO2 glass phase formed from the SiCN precursor to effectively encapsulate RuO2 particles. This enhances the film's density and adhesion to the substrate, preventing RuO2 volatilization at high temperatures. Additionally, the high conductivity of TiB2 improves the film's overall conductivity. Test results indicate that the SiCN/RuO2/TiB2 film exhibits high linearity from room temperature to 900 °C, high stability (resistance drift rate of 0.1%/h at 800 °C), and high conductivity (4410 S/m). As a proof of concept, temperature sensors and a heat flux sensor were successfully fabricated on a metallic hemispherical surface. Performance tests in extreme environments using high-power lasers and flame guns verified that the conformal thin-film sensor can accurately measure spherical temperature and heat flux, with a heat flux sensor response time of 53 ms. In conclusion, the SiCN/RuO2/TiB2 composite ceramic ink developed in this study offers a high-performance and cost-effective solution for high-temperature conformal thin-film sensors in extreme environments.

14.
Microsyst Nanoeng ; 10: 96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006908

RESUMO

Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the "3S" components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated "3S" components are discussed. Architecture design concepts of scaffolds, stimulation and sensors in chips.

15.
Sci Rep ; 14(1): 15695, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977824

RESUMO

Hydrogels are extensively explored as biomaterials for tissue scaffolds, and their controlled fabrication has been the subject of wide investigation. However, the tedious mechanical property adjusting process through formula control hindered their application for diverse tissue scaffolds. To overcome this limitation, we proposed a two-step process to realize simple adjustment of mechanical modulus over a broad range, by combining digital light processing (DLP) and post-processing steps. UV-curable hydrogels (polyacrylamide-alginate) are 3D printed via DLP, with the ability to create complex 3D patterns. Subsequent post-processing with Fe3+ ions bath induces secondary crosslinking of hydrogel scaffolds, tuning the modulus as required through soaking in solutions with different Fe3+ concentrations. This innovative two-step process offers high-precision (10 µm) and broad modulus adjusting capability (15.8-345 kPa), covering a broad range of tissues in the human body. As a practical demonstration, hydrogel scaffolds with tissue-mimicking patterns were printed for cultivating cardiac tissue and vascular scaffolds, which can effectively support tissue growth and induce tissue morphologies.


Assuntos
Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Hidrogéis/química , Engenharia Tecidual/métodos , Humanos , Alginatos/química , Materiais Biocompatíveis/química , Resinas Acrílicas/química , Módulo de Elasticidade , Luz
16.
ACS Appl Mater Interfaces ; 16(35): 45861-45870, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39177826

RESUMO

In vitro cardiomyocyte mechano-sensing platform is crucial for evaluating the mechanical performance of cardiac tissues and will be an indispensable tool for application in drug discovery and disease mechanism study. Magnetic sensing offers significant advantages in real-time, in situ wireless monitoring and resistance to ion interference. However, due to the mismatch between the stiffness of traditional rigid magnetic material and myocardial tissue, sensitivity is insufficient and it is difficult to achieve cell structure induction and three-dimensional cultivation. Herein, a magnetic sensing platform that integrates a neodymium-iron-boron/polydimethylsiloxane (NdFeB/PDMS) flexible microbeam with suspended and ordered polycaprolactone (PCL) nanofiber membranes was developed, providing a three-dimensional anisotropic culture environment for cardiomyocyte growth and simultaneously realizing in situ wireless contractility monitoring. The as-prepared sensor presented an ultrahigh sensitivity of 442.2 µV/µm and a deflection resolution of 2 µm. By continuously monitoring the cardiomyocyte growth status and drug stimulation feedback, we verified the capability of the platform to capture dynamic changes in cardiomyocyte contractility. This platform provides a perspective tool for evaluating cardiomyocyte maturity and drug performance.


Assuntos
Miócitos Cardíacos , Nanofibras , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Nanofibras/química , Animais , Ratos , Dimetilpolisiloxanos/química , Tecnologia sem Fio , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Poliésteres/química , Neodímio/química
17.
ACS Appl Mater Interfaces ; 16(1): 966-974, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109359

RESUMO

Monitoring high-temperature strain on curved components in harsh environments is a challenge for a wide range of applications, including in aircraft engines, gas turbines, and hypersonic vehicles. Although there are significant improvements in the preparation of high-temperature piezoresistive film on planar surfaces using 3D printing methods, there are still difficulties with poor surface compatibility and high-temperature strain testing on curved surfaces. Herein, a conformal direct ink writing (CDIW) system coupled with an error feedback regulation strategy was used to fabricate high-precision, thick films on curved surfaces. This strategy enabled the maximum amount of error in the distance between the needle and the substrate on a curved surface to be regulated from 155 to 4 µm. A conformal Pt thick-film strain gauge (CPTFSG) with a room-temperature strain coefficient of 1.7 was created on a curved metallic substrate for the first time. The resistance drift rate at 800 °C for 1 h was 1.1%, which demonstrated the excellent stability and oxidation resistance of the CPTFSG. High-temperature dynamic strain tests up to 769 °C revealed that the sensor had excellent high-temperature strain test performance. Furthermore, the CPTFSG was conformally deposited on an aero-engine turbine blade to perform in situ tensile and compressive strain testing at room temperature. High-temperature strain tests were conducted at 100 and 200 °C for 600 and 580 µÎµ, respectively, demonstrating a high steady-state response consistent with the commercial high-temperature strain transducer. In addition, steady-state strain tests at high temperatures up to 496 °C were tested. The CDIW error modulation strategy provides a highly promising approach for the high-precision fabrication of Pt thick films on complex surfaces and driving in situ sensing of high-temperature parameters on curved components toward practical applications.

18.
J Colloid Interface Sci ; 658: 913-922, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157615

RESUMO

Thin-film sensors are essential for real-time monitoring of components in high-temperature environments. Traditional fabrication methods often involve complicated fabrication steps or require prolonged high-temperature annealing, limiting their practical applicability. Here, we present an approach using direct ink writing and laser scanning (DIW-LS) to fabricate high-temperature functional thin films. An indium tin oxide (ITO)/preceramic polymer (PP) ink suitable for DIW was developed. Under LS, the ITO/PP thin film shrank in volume. Meanwhile, the rapid pyrolysis of PP into amorphous precursor-derived ceramic (PDC) facilitated the faster sintering of ITO nanoparticles and improved the densification of the thin film. This process realized the formation of a conductive network of interconnected ITO nanoparticles. The results show that the ITO/PDC thin film exhibits excellent stability, with a drift rate of 4.7 % at 1000 °C for 25 h, and withstands temperatures up to 1250 °C in the ambient atmosphere. It is also sensitive to strain, with a maximum gauge factor of -6.0. As a proof of concept, we have used DIW-LS technology to fabricate a thin-film heat flux sensor on the surface of the turbine blade, capable of measuring heat flux densities over 1 MW/m2. This DIW-LS process provides a viable approach for the integrated, rapid, and flexible fabrication of thin film sensors for harsh environments.

19.
Front Biosci (Landmark Ed) ; 29(2): 49, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420814

RESUMO

BACKGROUND: Myogenin is well known as a crucial transcription factor in skeletal muscle development, yet its other biological functions remain unexplored. Previous research showed that myogenin suppresses apoptosis induced by angiotensin II in human induced pluripotent stem cell-derived cardiomyocytes, and offered a new perspective on myogenin's role in cardioprotection. However, the detailed mechanism of this cardioprotection, especially under oxidative stress, is still unclear. METHODS: In this study, hydrogen peroxide (H2O2) was used to generate reactive oxygen species in myogenin-overexpressing cardiomyocytes. The apoptosis was examined by flow cytometry. Transcriptome sequencing (RNA-seq) was performed to identify genes regulated by myogenin. Western blotting was used to detect the protein level of DUSP13 and the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). The dual-luciferase reporter assay and ChIP assay were used to confirm the binding of myogenin to the promoter region of DUSP13. DUSP13 overexpression and knockdown assays were performed to study its anti-apoptotic role. RESULTS: Flow cytometry analysis of apoptosis showed that overexpressing myogenin for 24 and 48 hours decreased the apoptotic ratio by 47.9% and 63.5%, respectively, compared with untreated controls. Transcriptome sequencing performed on cardiomyocytes that expressed myogenin for different amounts of time (6, 12, 24, and 48 hours) identified DUSP13 as being up-regulated by myogenin. Western blotting showed that overexpression of myogenin increased the expression of DUSP13 and decreased the phosphorylation level of p38 MAPK. A dual-luciferase reporter assay proved that myogenin bound directly to the promoter region of DUSP13 and led to strong relative luciferase activity. Direct expression of DUSP13A and DUSP13B significantly reduced the rates of apoptosis and necrosis in cells treated with H2O2. Knockdown of DUSP13B significantly increased the rate of apoptosis in cells treated with H2O2. CONCLUSIONS: The present findings suggest that myogenin might attenuate apoptosis induced by reactive oxygen species by up-regulating DUSP13 and inactivating the p38 MAPK pathway.


Assuntos
Peróxido de Hidrogênio , Células-Tronco Pluripotentes Induzidas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Miogenina/genética , Miogenina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Apoptose , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Luciferases/metabolismo
20.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763882

RESUMO

Thin-film sensors are regarded as advanced technologies for in situ condition monitoring of components operating in harsh environments, such as aerospace engines. Nevertheless, these sensors encounter challenges due to the high-temperature oxidation of materials and intricate manufacturing processes. This paper presents a simple method to fabricate high temperature-resistant oxidized SiCN precursor and La(Ca)CrO3 composite thin film temperature sensors by screen printing and air annealing. The developed sensor demonstrates a broad temperature response ranging from 200 °C to 1100 °C with negative temperature coefficients (NTC). It exhibits exceptional resistance to high-temperature oxidation and maintains performance stability. Notably, the sensor's resistance changes by 3% after exposure to an 1100 °C air environment for 1 h. This oxidation resistance improvement surpasses the currently reported SiCN precursor thin-film sensors. Additionally, the sensor's temperature coefficient of resistance (TCR) can reach up to -7900 ppm/°C at 200 °C. This strategy is expected to be used for other high-temperature thin-film sensors such as strain gauges, heat flux sensors, and thermocouples. There is great potential for applications in high-temperature field monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA