Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(10): e2307458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145355

RESUMO

Low-dimensional semiconductor nanostructures, particularly in the form of nanowire configurations with large surface-to-volume-ratio, offer intriguing optoelectronic properties for the advancement of integrated photonic technologies. Here, a bias-controlled, superior dual-functional broadband light detecting/emitting diode enabled by constructing the aluminum-gallium-nitride-based nanowire on the silicon-platform is reported. Strikingly, the diode exhibits a stable and high responsivity (R) of over 200 mAW-1 covering an extremely wide operation band under reverse bias conditions, ranging from deep ultraviolet (DUV: 254 nm) to near-infrared (NIR: 1000 nm) spectrum region. While at zero bias, it still possesses superior DUV light selectivity with a high off-rejection ratio of 106. When it comes to the operation of the light-emitting mode under forward bias, it can achieve large spectral changes from UV to red simply by coating colloid quantum dots on the nanowires. Based on the multifunctional features of the diodes, this study further employs them in various optoelectronic systems, demonstrating outstanding applications in multicolor imaging, filterless color discrimination, and DUV/NIR visualization. Such highly responsive broadband photodetector with a tunable emitter enabled by III-V nanowire on silicon provides a new avenue toward the realization of integrated photonics and holds great promise for future applications in communication, sensing, imaging, and visualization.

2.
Opt Express ; 31(10): 16406-16422, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157719

RESUMO

Ultraviolet C (UVC) micro light-emitting diode (LED) can achieve symbol communication rate up to 100Msps at distance 40 meters without transmitter-side lens to guarantee certain communication mobility. We consider what we believe to be a new scenario where high speed UV communciation is realized under unknown low-rate interference. The signal amplitude properties are characterized, and the interference intensity is categorized into three cases, namely weak, medium and high interference intensity. The achievable transmission rates for the three cases are derived, where the achievable transmission rate for medium interference intensity can approach those in weak interference intensity and strong interference intensity cases. We provide Gaussian approximation and related log-likelihood ratio (LLR) calculation, which are fed into the subsequent message-passing decoder. In the experiment, the data is transmitted with symbol rate 20 Msps under unknown interference with symbol rate 1 Msps, received by one photomultiplier tube (PMT). Experimental results show that the proposed interference symbol estimation approach shows negligibly higher bit error rate (BER) compared with those with perfect knowledge on the interference symbols.

3.
Opt Lett ; 48(21): 5575-5578, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910706

RESUMO

Herein, a broadband photodetector (BPD) is constructed with consistent and stable detection abilities for deep ultraviolet to near-infrared spectral range. The BPD integrates the GaN template with a hybrid organic semiconductor, PM6:Y6, via the spin-coating process, and is fabricated in the form of asymmetric metal-semiconductor-metal structure. Under an optimal voltage, the device shows consistent photoresponse within 254 to 850 nm, featuring high responsivity (10 to 60 A/W), photo-to-dark-current ratio over 103, and fast response time. These results show the potential of such organic/GaN heterojunctions as a simple and effective strategy to build BPDs for a reliable photo-sensing application in the future.

4.
Nano Lett ; 21(1): 120-129, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320006

RESUMO

Energy-saving photodetectors are the key components in future photonic systems. Particularly, self-powered photoelectrochemical-type photodetectors (PEC-PDs), which depart completely from the classical solid-state junction device, have lately intrigued intensive interest to meet next-generation power-independent and environment-sensitive photodetection. Herein, we construct, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon. Importantly, with the proper surface platinum (Pt) decoration, a significant boost of photon responsivity by more than an order of magnitude was achieved in the newly built Pt/AlGaN nanoarchitectures, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source. Such high solar-blind photodetection originates from the unparalleled material quality, fast interfacial kinetics, as well as high carrier separation efficiency which suggests that embracement of defect-free wide-bandgap semiconductor nanostructures with appropriate surface decoration offers an unprecedented opportunity for designing future energy-efficient and large-scale optoelectronic systems on a silicon platform.

5.
Rep Prog Phys ; 84(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33477132

RESUMO

Wide bandgap aluminum gallium nitride (AlGaN) semiconductor alloys have established themselves as the key materials for building ultraviolet (UV) optoelectronic and power electronic devices. However, further improvements to device performance are lagging, largely due to the difficulties in precisely controlling carrier behavior, both carrier generation and carrier transport, within AlGaN-based devices. Fortunately, it has been discovered that instead of using AlGaN layers with fixed Al compositions, by grading the Al composition along the growth direction, it is possible to (1) generate high-density electrons and holes via polarization-induced doping; (2) manipulate carrier transport behavior via energy band modulation, also known as 'band engineering'. Consequently, such compositionally graded AlGaN alloys have attracted extensive interest as promising building blocks for efficient AlGaN-based UV light emitters and power electronic devices. In this review, we focus on the unique physical properties of graded AlGaN alloys and highlight the key roles that such graded structures play in device exploration. Firstly, we elaborate on the underlying mechanisms of efficient carrier generation and transport manipulation enabled by graded AlGaN alloys. Thereafter, we comprehensively summarize and discuss the recent progress in UV light emitters and power electronic devices incorporating graded AlGaN structures. Finally, we outline the prospects associated with the implementation of graded AlGaN alloys in the pursuit of high-performance optoelectronic and power electronic devices.

6.
Opt Express ; 29(17): 27404-27415, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615157

RESUMO

The realization of efficient III-nitride emitters in the green-to-amber region is fundamental to the monolithic integration of multicolor emitters and the development of III-nitride-based full-color high-resolution displays. A hybrid nucleation layer, which includes sputtered AlN and mid-temperature GaN components, was proposed for the development of efficient III-nitride emitters in the green-to-amber region. The mid-temperature GaN component in the hybrid nucleation layer induced the formation of a stacking fault band structure, which effectively relaxed the misfit stress at the GaN/sapphire interface. A reduced dislocation density and in-plane compressive stress in InGaN/GaN multiple quantum wells were obtained on the hybrid nucleation layer in comparison with the conventional sputtered AlN nucleation layer. Consequently, a significantly enhanced internal quantum efficiency and improved light output power were achieved for the LEDs grown on the hybrid nucleation layer. This gain is attributed to the increased localization depth and spatial overlapping of the electron and hole wave functions. In the present study, the hybrid nucleation layer provides a promising approach for the pursuit of efficient III-nitride emitters in the green-to-amber region.

7.
Opt Lett ; 46(19): 4809-4812, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598205

RESUMO

In this Letter, we perform a comprehensive investigation on the optical characterization of micro-sized deep-ultraviolet (DUV) LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the design of chip sidewall angle. We found that the micro-LEDs with a smaller inclined chip sidewall angle (∼33∘) have improved external quantum efficiency (EQE) performance 19% more than that of the micro-LEDs with a larger angle (∼75∘). Most importantly, the EQE improvement by adopting an inclined sidewall can be more outstanding as the diameter of the LED chip reduces from 40 to 20 µm. The enhanced EQE of the micro-LEDs with smaller inclined chip sidewall angles can be attributed to the stronger reflection of the inclined sidewall, leading to enhanced light extraction efficiency (LEE). In the end, the numerical optical modeling further reveals and verifies the impact of the sidewall angles on the LEE of the micro-LEDs, corroborating our experiment results. This Letter provides a fundamental understanding of the light extraction behavior with optimized chip geometry to design and fabricate highly efficient micro-LEDs in a DUV spectrum of the future.

8.
Opt Lett ; 46(13): 3203-3206, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197416

RESUMO

We report a GaN-based self-powered metal-semiconductor-metal (MSM)-type ultraviolet (UV) photodetector (PD) by employing a "lateral polarity structure (LPS)" grown on the sapphire substrate. An in-plane internal electric field and different Schottky barrier heights at a metal/semiconductor interface lead to efficient carrier separation and self-powered UV detection. A dark current of 6.8nA/cm2 and detectivity of 1.0×1012 Jones were obtained without applied bias. A high photo-to-dark current ratio of 1.2×104 and peak responsivity of 933.7 mA/W were achieved for the lateral polarity structure-photodetector (LPS-PD) under -10V. The enhanced performance of the LPS-PD was ascribed to the polarization-induced carrier separation as demonstrated by the lateral band diagram.

9.
Opt Lett ; 46(13): 3271-3274, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197433

RESUMO

The investigation of electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm was carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively. It was revealed that the LED chips with smaller mesa areas deliver considerably higher light output power density; meanwhile, they can sustain a higher current density, which is mainly attributed to the enhanced current spreading uniformity in micro-scale chips. Importantly, when the diameter of LED chips decreases from 300 µm to 20 µm, the peak external quantum efficiency (EQE) increases by 20%, and the EQE peak current density can be boosted from 8.85A/cm2 and 99.52A/cm2. Moreover, we observed a longer wavelength emission with enlarged full-width at half-maximum (FWHM) in the LEDs with smaller chip sizes because of the self-heating effect at high current injection. These experimental observations provide insights into the design and fabrication of high-efficiency micro-LEDs emitting in the DUV regime with different device geometries for various future applications.

10.
Opt Lett ; 46(21): 5356-5359, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724474

RESUMO

A hybrid patterned sapphire substrate (HPSS) aiming to achieve high-quality Al(Ga)N epilayers for the development of GaN-based ultraviolet light-emitting diodes (UV LEDs) has been prepared. The high-resolution X-ray diffraction measurements reveal that the Al(Ga)N epilayers grown on a HPSS and conventional patterned sapphire substrate (CPSS) have similar structural quality. More importantly, benefiting from the larger refractive index contrast between the patterned silica array and sapphire, the photons can escape from the hybrid substrate with an improved transmittance in the UV band. As a result, in comparison with the UV LEDs grown on the CPSS, the LEDs grown on the HPSS exhibit a significantly enhanced light output power by 14.5% and more than 22.9% higher peak external quantum efficiency, owing to the boost of the light extraction efficiency from the adoption of the HPSS which can be used as a promising substrate to realize high-efficiency and high-power UV LEDs of the future.

11.
Opt Express ; 27(20): A1544-A1553, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684505

RESUMO

AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) still suffer from poor quantum efficiency and low optical power. In this work, we proposed a DUV LED structure that includes five unique AlxGa1-xN quantum barriers (QBs); Each QB has a linear-increment of Al composition by 0.03 along the growth direction, unlike those commonly used flat QBs in conventional LEDs. As a result, the electron and hole concentration in the active region was considerably increased, attributing to the success of the electron blocking effect and enhanced hole injection efficiency. Importantly, the optical power was remarkably improved by 65.83% at the injection current of 60 mA. After in-depth device optimization, we found that a relatively thinner graded QB layer could further boost the LED performance because of the increased carrier concentrations and enhanced electron and hole wave function overlap in the QW, triggering a much higher radiative recombination efficiency. Hence, the proposed graded QBs, which have a continuous increment of Al composition along the growth direction, provide us with an effective solution to boost light output power in the pursuit of high-performance DUV emitters.

12.
Opt Express ; 25(19): 23267-23274, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041627

RESUMO

A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 µW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10-4 and 2.4 ×10-4, respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10-3. The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

13.
Opt Express ; 25(2): 1381-1390, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28158020

RESUMO

Currently the AlGaN-based ultraviolet (UV) solid-state lighting research suffers from numerous challenges. In particular, low internal quantum efficiency, low extraction efficiency, inefficient doping, large polarization fields, and high dislocation density epitaxy constitute bottlenecks in realizing high power devices. Despite the clear advantage of quantum-confinement nanostructure, it has not been widely utilized in AlGaN-based nanowires. Here we utilize the self-assembled nanowires (NWs) with embedding quantum-disks (Qdisks) to mitigate these issues, and achieve UV emission of 337 nm at 32 A/cm2 (80 mA in 0.5 × 0.5 mm2 device), a turn-on voltage of ~5.5 V and droop-free behavior up to 120 A/cm2 of injection current. The device was grown on a titanium-coated n-type silicon substrate, to improve current injection and heat dissipation. A narrow linewidth of 11.7 nm in the electroluminescence spectrum and a strong wavefunctions overlap factor of 42% confirm strong quantum confinement within uniformly formed AlGaN/AlGaN Qdisks, verified using transmission electron microscopy (TEM). The nitride-based UV nanowires light-emitting diodes (NWs-LEDs) grown on low cost and scalable metal/silicon template substrate, offers a scalable, environment friendly and low cost solution for numerous applications, such as solid-state lighting, spectroscopy, medical science and security.

14.
Adv Mater ; 36(8): e2309921, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016083

RESUMO

Metal halide perovskite light-emitting diodes (PeLEDs) are attracting increasing attention due to their potential applications in flat panel lighting and displays. The solution process, large-area fabrication, and flexibility are attractive properties of PeLEDs over traditional inorganic LEDs. However, it is still very challenging to deposit uniform perovskite films on flexible substrates using a blade or slot-die coating, as the flexible substrate is not perfectly flat. Here, the inkjet printing technique is adopted, and the key challenges are overcome step-by-step in preparing large-area films on flexible substrates. Double-hole transporting layers are first used and a wetting interfacial layer to improve the surface wettability so that the printed perovskite droplets can form a continuous wet film. The fluidic and evaporation dynamics of the perovskite wet layer is manipulated to suppress the coffee ring effect by solvent engineering. Uniform perovskite films are obtained finally on flexible substrates with different perovskite compositions. The peak external quantum efficiency of the inkjet-printed PeLEDs reaches 14.3%. Large-area flexible PeLEDs (4 × 7 cm2 ) also show very uniform emission. This work represents a significant step toward real applications of large-area PeLEDs in flexible flat-panel lighting.

15.
Adv Mater ; : e2405874, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924239

RESUMO

High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in the digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single-device platform are in demand but remain challenging to fabricate. Herein, an AlGaN/GaN-based double-heterostructure is reported, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electron gas (2DEGs). Owing to the programmable feature of the 2DEGs by the combined gate and drain voltage inputs, with a particular capability of electron separation, collection and storage under different light illumination, the phototransistor shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics. A self-powered mode with a responsivity over 100 A W-1 and a photoconductive mode with a responsivity of ≈108 A W-1 are achieved, with the ultimate demonstration of a 10 × 10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage ability. The demonstration of three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units.

16.
Adv Mater ; 36(1): e2307779, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009587

RESUMO

The operational principle of semiconductor devices critically relies on the band structures that ultimately govern their charge-transfer characteristics. Indeed, the precise orchestration of band structure within semiconductor devices, notably at the semiconductor surface and corresponding interface, continues to pose a perennial conundrum. Herein, for the first time, this work reports a novel postepitaxy method: thickness-tunable carbon layer decoration to continuously manipulate the surface band bending of III-nitride semiconductors. Specifically, the surface band bending of p-type aluminum-gallium-nitride (p-AlGaN) nanowires grown on n-Si can be precisely controlled by depositing different carbon layers as guided by theoretical calculations, which eventually regulate the ambipolar charge-transfer behavior between the p-AlGaN/electrolyte and p-AlGaN/n-Si interface in an electrolyte environment. Enabled by the accurate modulation of the thickness of carbon layers, a spectrally distinctive bipolar photoresponse with a controllable polarity-switching-point over a wide spectrum range can be achieved, further demonstrating reprogrammable photoswitching logic gates "XOR", "NAND", "OR", and "NOT" in a single device. Finally, this work constructs a secured image transmission system where the optical signals are encrypted through the "XOR" logic operations. The proposed continuous surface band tuning strategy provides an effective avenue for the development of multifunctional integrated-photonics systems implemented with nanophotonics.

17.
Nanomicro Lett ; 16(1): 192, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743197

RESUMO

Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p-n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide (CoNiOx). Essentially, the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W-1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.

18.
Sci Rep ; 13(1): 8259, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217774

RESUMO

Delafossite semiconductors have attracted substantial attention in the field of electro-optics owing to their unique properties and availability of p-type materials that are applicable for solar cells, photocatalysts, photodetectors (PDs) and p-type transparent conductive oxides (TCOs). The CuGaO2 (CGO), as one of the most promising p-type delafossite materials, has appealing electrical and optical properties. In this work, we are able to synthesize CGO with different phases by adopting solid-state reaction route using sputtering followed by heat treatment at different temperatures. By examining the structural properties of CGO thin films, we found that the pure delafossite phase appears at the annealing temperature of 900 °C. While at lower temperatures, delafossite phase can be observed, but along with spinel phase. Furthermore, their structural and physical characterizations indicate an improvement of material-quality at temperatures higher than 600 °C. Thereafter, we fabricated a CGO-based ultraviolet-PD (UV-PD) with a metal-semiconductor-metal (MSM) configuration which exhibits a remarkable performance compared to the other CGO-based UV-PDs and have also investigated the effect of metal contacts on the device performance. We demonstrate that UV-PD with the employment of Cu as the electrical contact shows a Schottky behavior with a responsivity of 29 mA/W with a short response time of 1.8 and 5.9 s for rise and decay times, respectively. In contrast, the UV-PD with Ag electrode has shown an improved responsivity of about 85 mA/W with a slower rise/decay time of 12.2/12.8 s. Our work sheds light on the development of p-type delafossite semiconductor for possible optoelectronics application of the future.

19.
Adv Mater ; 35(28): e2300911, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912711

RESUMO

The p-n junction with bipolar characteristics sets the fundamental unit to build electronics while its unique rectification behavior constrains the degree of carrier tunability for expanded functionalities. Herein, a bipolar-junction photoelectrode employed with a gallium nitride (GaN) p-n homojunction nanowire array that operates in electrolyte is reported, demonstrating bipolar photoresponse controlled by different wavelengths of light. Significantly, with rational decoration of a ruthenium oxides (RuOx ) layer on nanowires guided by theoretical modeling, the resulting RuOx /p-n GaN photoelectrode exhibits unambiguously boosted bipolar photoresponse by an enhancement of 775% and 3000% for positive and negative photocurrents, respectively, compared to the pristine nanowires. The loading of the RuOx layer on nanowire surface optimizes surface band bending, which facilitates charge transfer across the GaN/electrolyte interface, meanwhile promoting the efficiency of redox reaction for both hydrogen evolution reaction and oxygen evolution reaction which corresponds to the negative and positive photocurrents, respectively. Finally, a dual-channel optical communication system incorporated with such photoelectrode is constructed with using only one photoelectrode to decode dual-band signals with encrypted property. The proposed bipolar device architecture presents a viable route to manipulate the carrier dynamics for the development of a plethora of multifunctional optoelectronic devices for future sensing, communication, and imaging systems.


Assuntos
Fotoquímica , Luz , Eletrólitos/química , Fotoquímica/instrumentação , Fotoquímica/métodos , Óxidos/química , Compostos de Rutênio/química , Nanofios/química
20.
ACS Nano ; 17(4): 3901-3912, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753692

RESUMO

The physicochemical properties of a semiconductor surface, especially in low-dimensional nanostructures, determine the electrical and optical behavior of the devices. Thereby, the precise control of surface properties is a prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for promoting device characteristics. Here, we report a facile approach to suppress the photocorrosion effect while boosting the photoresponse performance of n-GaN nanowires in a constructed photoelectrochemical-type photodetector by employing Co3O4 nanoclusters as a hole charging layer. Essentially, the Co3O4 nanoclusters not only alleviate nanowires from corrosion by optimizing the oxygen evolution reaction kinetics at the nanowire/electrolyte interface but also facilitate an efficient photogenerated carrier separation, migration, and collection process, leading to a significant ease of photocurrent attenuation (improved by nearly 867% after Co3O4 decoration). Strikingly, a record-high responsivity of 217.2 mA W-1 with an ultrafast response/recovery time of 0.03/0.02 ms can also be achieved, demonstrating one of the best performances among the reported photoelectrochemical-type photodetectors, that ultimately allowed us to build an underwater optical communication system based on the proposed nanowire array for practical applications. This work provides a perspective for the rational design of stable nanostructures for various applications in photo- and biosensing or energy-harvesting nanosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA