RESUMO
Transition metal hydroxides have attracted significant research interest for their energy storage and conversion technique applications. In particular, nickel hydroxide (Ni(OH)2), with increasing significance, is extensively used in material science and engineering. The past decades have witnessed the flourishing of Ni(OH)2-based materials as efficient electrocatalysts for water oxidation, which is a critical catalytic reaction for sustainable technologies, such as water electrolysis, fuel cells, CO2 reduction, and metal-air batteries. Coupling the electrochemical oxidation of small molecules to replace water oxidation at the anode is confirmed as an effective and promising strategy for realizing the energy-saving production. The physicochemical properties of Ni(OH)2 related to conventional water oxidation are first presented in this review. Then, recent progress based on Ni(OH)2 materials for these promising electrochemical reactions is symmetrically categorized and reviewed. Significant emphasis is placed on establishing the structure-activity relationship and disclosing the reaction mechanism. Emerging material design strategies for novel electrocatalysts are also highlighted. Finally, the existing challenges and future research directions are presented.
RESUMO
Ulmus parvifolia Jacq. is an important tree with ornamental value, which is widely planted in Hebei and southern regions of China. In September 2022, a leaf spot symptom was observed on about approximately 20% U. parvifolia seedlings growing a tree farm (20000 m2) of Jiangsu Academy of Forestry (118°45'57.30â³E, 31°51'27. 94â³N). Gray to black spots appeared on leaves of seedlings. Five diseased leaves were collected from five different seedlings. The pieces were excised from the margins between healthy and diseased tissues, surface sterilized in 75% ethanol for 30 s and then in 1.5% NaClO for 90 s, rinsed three times in sterilized distilled water, plated on potato dextrose agar (PDA) and incubated at 25â in the darkness. Pure cultures were obtained by monosporic isolation. Six isolates with identical morphological features and the internal transcribed spacer (ITS) sequences were obtained (the isolate rate of 67%), and identified as Alternaria sp. A representative isolate, LY-1-1 was used for the further study. The colony of LY-1-1, growing on PDA was cotton-like and brown in color with gray-white aerial hyphae on their surfaces, and its reverse was dark grey. The conidia were ovate to pear-shaped, brown in color, with 1 to 4 transverse septa and 0 to 1 longitudinal septa, parietal cells extending into the beak, and measured 7.1 to 12.5×3.8 to 7.1 µm (n=35). These characteristics were consistent with the description of Alternaria sp. (Simmons 2007). The regions of ITS, large subunit ribosomal RNA (LSU), small subunit ribosomal RNA (SSU), anonymous region OPA10-2 genomic sequence (OPA10-2), Alternaria 1 major allergen (Alta1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and translation elongation factor 1-alpha (TEF1) genes (GenBank Accession No. OR047916, OR051904, OR047919, OR061065, OR061063, OR061064, and OR061062, respectively) were amplified (White et al. 1990; Woudenberg et al. 2015) and sequenced. These obtained sequences showed 99.86-100% similarity to the ITS (514/515 bp) of A. alternata isolate SPM-2 (OR378581), LSU (801/801 bp) of isolate B9 (OR366492), SSU (1019/1020 bp) of strain LSU0766 (MT000349), OPA10-2 (632/633 bp) of strain 19-1 (MN185000), Alta1 (470/470 bp) of strain CMML21-73 (OQ831518), GAPDH (177/177 bp) of isolate CS36-3 (KY814638), and TEF1 (240/240 bp) of isolate SY-6 (OP980553). A neighbor-joining phylogenetic tree was generated by combining all sequenced loci in MEGA7. The isolate LY-1-1 clustered in the A. alternata clade with 98% bootstrap support. Three 3-month-old U. parvifolia seedlings were wounded with a sterile needle and inoculated with 20 µL conidia suspension (1×106 spores/mL) on the left sides of leaves. Inoculation on the right side with 20 µL of sterile water was treated as a control. All inoculated plants were incubated in a greenhouse at 25â, 80% relative humidity, and a 12-h light/dark cycle. The experiment was repeated three times. After 5 days of inoculation, typical gray to black spots were found on the left sides of all inoculated leaves, and the control did not have any leaf spot symptoms. Subsequently, the same fungus was reisolated and identified based on morphological and molecular traits, fulfilling Koch's postulates. The A. alternata has been reported to cause leaf spot on pecan (Wu et al. 2020), fruit spot on olive (Alam et al. 2019) and fruit rot on lychee (Alam et al. 2017). However, there are no other reports of A. alternata on U. parvifolia in the world. Thus, this study provides an important reference for the biology, epidemiology of A. alternata.
RESUMO
The harmful effects on the human body from p-phenylenediamine (PPD) in hair dyes can cause allergies and even cancer. Therefore, it is particularly important to accurately control and detect the content of PPD in our daily products and environment. Here, a small amount of non-metallic elemental P doped in perovskite oxide of SrCoO3-δ (SC) forms a good catalytic material, SrCo0.95P0.05O3-δ (SCP), for PPD detection. The improved performance compared with that of the parent SC can be attributed to three contributing factors, including a larger amount of highly oxidative oxygen species O22-/O-, better electrical conductivity, and more active sites on the P5+-oxygen bonds of SCP. Moreover, the lattice oxygen mechanism (LOM) with highly active species of lattice O vacancies and adsorbed -OO for electrocatalytic oxidation of PPD by the SCP/GCE (glass carbon electrode) sensor is proposed in our work. More importantly, the SCP/GCE sensor exhibits good stability, a low limit of detection, and high reliability (error < 5.78%) towards PPD determination in real samples of hair dyes, suggesting the substantial research potential for practical applications.
RESUMO
Surface reconstruction engineering is an effective strategy to promote the catalytic activities of electrocatalysts, especially for water oxidation. Taking advantage of the physicochemical properties of precatalysts by manipulating their structural self-reconstruction levels provide a promising methodology for achieving suitable catalysts. In this review, we focus on recent advances in research related to the rational control of the process and level of surface transformation ultimately to design advanced oxygen evolution electrocatalysts. We start by discussing the original contributions to surface changes during electrochemical reactions and related factors that can influence the electrocatalytic properties of materials. We then present an overview of current developments and a summary of recently proposed strategies to boost electrochemical performance outcomes by the controlling structural self-reconstruction process. By conveying these insights, processes, general trends, and challenges, this review will further our understanding of surface reconstruction processes and facilitate the development of high-performance electrocatalysts beyond water oxidation.
RESUMO
Spinel and perovskite with distinctive crystal structures are two of the most popular material families in electrocatalysis, which, however, usually show poor conductivity, causing a negative effect on the charge transfer process during electrochemical reactions. Herein, a highly conductive inverse spinel (Fe3 O4 ) and anti-perovskite (Ni3 FeN) hetero-structured nanocomposite is reported as a superior oxygen evolution electrocatalyst, which can be facilely prepared based on a one-pot synthesis strategy. Thanks to the strong hybridization between Ni/Fe 3d and N 2p orbitals, the Ni3 FeN is easily transformed into NiFe (oxy)hydroxide as the real active species during the oxygen evolution reaction (OER) process, while the Fe3 O4 component with low O-p band center relative to Fermi level is structurally stable. As a result, both high surface reactivity and bulk electronic transport ability are reached. By directly growing Fe3 O4 /Ni3 FeN heterostructure on freestanding carbon fiber paper and testing based on the three-electrode configuration, it requires only 160 mV overpotential to deliver a current density of 30 mA cm-2 for OER. Also, negligible performance decay is observed within a prolonged test period of 100 h. This work sheds light on the rational design of novel heterostructure materials for electrocatalysis.
RESUMO
Airborne particular matter (PM2.5) contains complex mixtures of pollutants, and their compositions also vary with time and location. Inhalation of PM2.5 may cause a number of diseases, such as bronchial and lung inflammation and lung cancer. So far, how different components of PM2.5 contribute to inflammation and toxicity is still not known. To identify key PM2.5 components that are responsible for inflammation, here we took a reductionism approach and synthesized a model PM2.5 library containing 20 carbon nanoparticle based members with loadings of As(III), Pb2+, Cr(VI), and BaP individually or in combination at environment relevant concentrations. We discovered that only carbon nanoparticle-Pb2+ adducts, not other pollutants or adducts, induced inflammation in human bronchial cells by suppressing the expression of a novel long noncoding RNA lnc-PCK1-2:1, while lnc-PCK1-2:1 routinely plays a regulatory role in inhibiting inflammation. This finding was further substantiated by varying Pb2+ loadings on carbon nanoparticles and overexpressing lnc-PCK1-2:1. The success of this approach opens an avenue for further elucidation of molecular mechanisms of PM2.5-induced inflammation and toxicity.
Assuntos
Poluentes Atmosféricos , RNA Longo não Codificante , Regulação para Baixo , Células Epiteliais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Chumbo , Material Particulado , Fosfoenolpiruvato Carboxiquinase (GTP)RESUMO
Nanomaterials, such as ZrO2 nanoparticles (ZrO2 NPs), are very effective in water remediation. However, the safety issues related to nanoparticle release and toxicity to humans remain to be resolved. Here we evaluated the cytotoxicity of ZrO2 NPs and their adducts with pollutants using a human cell panel containing stomach, intestine, liver and kidney cells. We found that different pollutants or ZrO2NP/pollutant adducts targeted cells from different organs, suggesting the necessity of a cell panel to model oral exposures. The cooperation of ZrO2 NPs and pollutants was quite complex, consisting of synergistic, antagonistic, or additive effects. For example, ZrO2 NPs enhanced the cytotoxicity of Pb2+ in GES-1 cells and of Pb2+, Cd2+ in FHC cells, while alleviating the toxicity of Pb2+ and As (III) in HepG2 and Hek293 cells. Our results also indicated that even concentrations of pollutants that meet the national standard, the ZrO2 NPs concentration should be kept below 17⯵g/mL to avoid ZrO2 NP/pollutant adduct synergistic toxicity.
Assuntos
Biodegradação Ambiental , Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Águas Residuárias , Zircônio/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Rim/citologia , Fígado/citologia , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Estômago/citologiaRESUMO
Cell death is crucial to human health and is related to various serious diseases. Therefore, generation of new cell death regulators is urgently needed for disease treatment. Nanoparticles (NPs) are now routinely used in a variety of fields, including consumer products and medicine. Exhibiting stability and ease of decoration, gold nanoparticles (GNPs) could be used in diagnosis and disease treatment. Upon entering the human body, GNPs contact human cells in the blood, targeting organs and the immune system. This property results in the disturbance of cell function and even cell death. Therefore, GNPs may act as powerful cell death regulators. However, at present, we are far from establishing a structure-activity relationship between the physicochemical properties of GNPs and cell death, and predicting GNP-induced cell death. In this review, GNPs' size, shape, and surface properties are observed to play key roles in regulating various cell death modalities and related signaling pathways. These results could guide the design of GNPs for nanomedicine.
Assuntos
Ouro , Nanopartículas Metálicas , Nanomedicina , Animais , Apoptose , Autofagia , Morte Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Nanomedicina/métodos , Necrose , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The green organs, especially the leaves, of many Compositae plants possess characteristic aromas. To exploit the utility value of these germplasm resources, the constituents, mainly volatile compounds, in the leaves of 14 scented plant materials were qualitatively and quantitatively compared via gas chromatography-mass spectrometry (GC-MS). A total of 213 constituents were detected and tentatively identified in the leaf extracts, and terpenoids (especially monoterpene and sesquiterpene derivatives), accounting for 40.45-90.38% of the total compounds, were the main components. The quantitative results revealed diverse concentrations and compositions of the chemical constituents between species. Principal component analysis (PCA) showed that different groups of these Compositae plants were characterized by main components of α-thujone, germacrene D, eucalyptol, ß-caryophyllene, and camphor, for example. On the other hand, cluster memberships corresponding to the molecular phylogenetic framework, were found by hierarchical cluster analysis (HCA) based on the terpenoid composition of the tested species. These results provide a phytochemical foundation for the use of these scented Compositae plants, and for the further study of the chemotaxonomy and differential metabolism of Compositae species.
Assuntos
Asteraceae/química , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Análise por Conglomerados , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Extratos Vegetais/análise , Extratos Vegetais/química , Terpenos/análise , Terpenos/química , Compostos Orgânicos Voláteis/classificaçãoRESUMO
Simple disordered perovskite oxides have been intensively exploited as promising electrocatalysts for the oxygen evolution reaction (OER) towards their application in water splitting, reversible fuel cells, and rechargeable metal-air batteries. Here, the B-site cation-ordered double perovskites Ba2 Bix Sc0.2 Co1.8-x O6-δ , with two types of cobalt local environments, are demonstrated to be superior electrocatalysts for OER in alkaline solution, demonstrating ultrahigh catalytic activity. In addition, no obvious performance degradation is observed for the Ba2 Bi0.1 Sc0.2 Co1.7 O6-δ sample after a continuous chronopotentiometry test. The critical role of the ordered [Co2+ ] and [Sc3+ , Bi5+ , Co3+ ] dual environments in improving OER activity is exhibited. These results indicate that B-site cation-ordered double perovskite oxides may represent a new class of promising electrocatalysts for the OER in sustainable energy storage and conversion systems.
RESUMO
The objective of this study was to identify the major volatile compounds and their relative concentrations in flowers of different chrysanthemum cultivars and their wild relatives. The volatile organic components of fresh flowers were analyzed using a headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. In total, 193 volatile organic components were detected; the major scent components were monoterpenoids and oxygenated monoterpenoids, which accounted for 68.59%-99.93% of the total volatiles in all tested materials except for Chrysanthemum indicum collected from Huangshan, in which they accounted for only 37.45% of total volatiles. The major volatile compounds were camphor, α-pinene, chrysanthenone, safranal, myrcene, eucalyptol, 2,4,5,6,7,7ab-hexahydro-1H-indene, verbenone, ß-phellandrene and camphene. In a hierarchical cluster analysis, 39 accessions of Chrysanthemum and its relatives formed six clusters based on their floral volatile compounds. In a principal component analysis, only spider type flowers were located closely on the score plot. The results of this study provide a basis for breeding chrysanthemum cultivars which desirable floral scents.
Assuntos
Chrysanthemum/química , Flores/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/análise , Chrysanthemum/classificação , Monoterpenos/química , Monoterpenos/isolamento & purificação , Odorantes/análise , Filogenia , Óleos de Plantas/análise , Análise de Componente PrincipalRESUMO
In this work, experimental and theoretical analyses reveal that different types of Cu wires significantly change the adsorption properties of reactant molecules and the benzyl alcohol oxidation reaction performance. In particular, CuO nanowires in situ grown on Cu foam exhibit the best performance with a low potential of 1.39 V at a current density of 200 mA cm-2, high selectivity to benzoic acid production, and good operational stability.
RESUMO
Reversible proton ceramic electrochemical cells are promising solid-state ion devices for efficient power generation and energy storage, but necessitate effective air electrodes to accelerate the commercial application. Here, we construct a triple-conducting hybrid electrode through a stoichiometry tuning strategy, composed of a cubic phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ and a hexagonal phase Ba4Sr4(Co0.8Fe0.2)4O16-δ. Unlike the common method of creating self-assembled hybrids by breaking through material tolerance limits, the strategy of adjusting the stoichiometric ratio of the A-site/B-site not only achieves strong interactions between hybrid phases, but also can efficiently modifies the phase contents. When operate as an air electrode for reversible proton ceramic electrochemical cell, the hybrid electrode with unique dual-phase synergy shows excellent electrochemical performance with a current density of 3.73 A cm-2 @ 1.3 V in electrolysis mode and a peak power density of 1.99 W cm-2 in fuel cell mode at 650 °C.
RESUMO
Effects of salt stress on Artemisia scoparia and A. vulgaris "Variegate" were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris "Variegate" leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na(+) increased in both species under salt stress, but A. vulgaris "Variegate" had higher level of proline and soluble carbohydrate and lower level of MDA and Na(+). The ratios of K(+)/Na(+), Ca(2+)/Na(+), and Mg(2+)/Na(+) in A. vulgaris "Variegate" under NaCl stress were higher. Moreover, A. vulgaris "Variegate" had higher transport selectivity of K(+)/Na(+) from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris "Variegate" chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris "Variegate." Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K(+) between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance.
Assuntos
Artemisia/metabolismo , Cloroplastos/metabolismo , Pressão Osmótica/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Artemisia/crescimento & desenvolvimento , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Metais/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Tolerância ao Sal/efeitos dos fármacosRESUMO
CONTEXT: While Au-based catalysts recently have shown tremendous potential in glucose oxidation to gluconic acid, the detailed reaction mechanism is still unclear, which impedes the development of direct glucose fuel cell (DGFC). METHODS: Using density functional theory (DFT), we exhibit some new adsorption configurations and oxidation mechanisms by considering both the open chain form and the ring form of glucose on Au(111) surface in the presence of OH. The strong interactions between glucose and the OH adsorbed surface are obtained. Moreover, form the calculated energy pathways, the oxidation of glucose in the open chain involves the dissociation of the formyl C - H bond by the adsorbed OH, while the ring form glucose oxidation is initiated by O - H bond rupture rather than C - H bond scission and preferentially undergoes the ring-open process to generate the open chain form glucose. Meanwhile, the results demonstrate that the adsorbed OH assists in reducing the activation energy of reaction process.
RESUMO
Chrysanthemum morifolium is one of the most significant multipurpose crops with ornamental, medicinal, and edible value. Terpenoids, an essentials component of volatile oils, are abundant in chrysanthemum. However, the transcriptional regulation of terpenoid biosynthesis in chrysanthemums remains unclear. In the present investigation, we identified CmWRKY41, whose expression pattern is similar to that of terpenoid content in chrysanthemum floral scent, as a candidate gene that may promote terpenoid biosynthesis in chrysanthemum. Two structural genes 3-hydroxy-3-methylglutaryl-CoA reductase 2 (CmHMGR2) and farnesyl pyrophosphate synthase 2 (CmFPPS2), play key role in terpene biosynthesis in chrysanthemum. CmWRKY41 can directly bind to the promoters of CmHMGR2 or CmFPPS2 through GTGACA or CTGACG elements and activate its expression to promote sesquiterpene biosynthesis. In summary, these results indicate that CmWRKY41 targets CmHMGR2 and CmFPPS2 to positively regulate sesquiterpene biosynthesis in chrysanthemums. This study preliminarily revealed the molecular mechanism of terpenoid biosynthesis in chrysanthemum while enriching the secondary metabolism regulatory network.
Assuntos
Chrysanthemum , Óleos Voláteis , Sesquiterpenos , Flores/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Terpenos/metabolismo , Óleos Voláteis/metabolismo , Sesquiterpenos/metabolismoRESUMO
Pecan (Carya illinoinensis (Wagenh.) K. Koch) is an important oilseed nut and is rich in fatty acids (FAs) and flavonols. Pecan FA has significantly edible, industrial and clinical value. To investigate the dynamic patterns and compositions of FA, and the molecular mechanism that controls FA accumulation in pecan, lipidomic and transcriptomic analyses were performed to determine lipid profiles and gene expression in pecan's FA biosynthesis pathway. In the present study, compared with cultivars 'Caddo' and 'Y-01', 'Mahan' formed larger and heavier embryos and accumulated higher oil content. Lipidomic analysis showed that FA and (O-acyl)-1-hydroxy FA contents were higher in 'Mahan' at the mature stage. Based on full-length and comparative RNA-Seq, differential expression gene enrichment analysis revealed that many functional genes participated in the pathways of 'fatty acid biosynthesis', 'fatty acid metabolism' and 'linoleic acid metabolism'. High FA accumulation model from 'Mahan' demonstrated that key enzyme-encoding genes played an important role in regulating FA biosynthesis. Co-expression module analysis indicated that several transcription factors (TFs; MYB, TCP, bHLH, Dof, ERF, NAC) were involved in FA accumulation by regulating the expression of functional genes, and real-time quantitative PCR verification proved that these TFs had a high correlation with the pecan FA accumulation pattern. These findings provided an insight into the molecular mechanism of FA accumulation in C. illinoinensis embryo, which contributes to pecan oil yielding and pecan molecular breeding.
Assuntos
Carya , Transcriptoma , Carya/genética , Carya/metabolismo , Lipidômica , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismoRESUMO
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Assuntos
Autofagia , Nanopartículas , Homeostase , Humanos , Nanopartículas/química , Nanopartículas/toxicidadeRESUMO
One of the major challenges that hinder the practical application of water electrolysis lies in the design of advanced electrocatalysts toward the anodic oxygen evolution reaction (OER). In this work, a pure Co-based precatalyst of CoOOH/brownmillerite derived from the surface activation of brownmillerite by a surface acid etching method exhibits high activity and stable electrical properties toward the OER. Different from oxyhydroxide derived from in situ surface reconstruction during the electrochemical process, the growth of highly crystalline CoOOH from the brownmillerite surface enables rational control over the surface/bulk structure as well as the concentration of active sites, and this structure can be well maintained and serve as highly active sites. The catalyst shows a low overpotential of 320 mV to obtain 10 mA cm-2 and high stability in an alkaline electrolyte for the OER, which is comparable to the majority of Co-based electrocatalysts. Moreover, the appropriate interfacial interaction of the composite catalysts greatly contributes to the hydroxide insertion to improve water oxidation ability. This work proposes an effective strategy to develop high-performance metal oxide-based materials for the OER.
RESUMO
Despite numerous studies on effects of environmental accumulation of nano-pollutants, the influence of nanoparticles on the biological perturbations of coexisting pollutants in the environment remained unknown. The present study aimed at elucidating the perturbations of six environmental nanoparticles on detoxification of dioxin-induced toxicity at cellular level. We discovered that there was no remarkable difference in the cell uptake and intracellular distributions of these six nanoparticles. However, they have different effects on the detoxification of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Multi-walled carbon nanotubes (MWCNTs) inhibited the translocation of aryl hydrocarbon receptor (AhR) from cytosol to the nucleus, leading to the downregulation of cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and inhibition of detoxification function. These findings demonstrate that MWCNTs can impact the potential detoxification of dioxin-induced toxicity through modulating AhR signaling pathway. Co-exposures to MWCNTs and dioxin may cause even more toxicity than single exposure to dioxin or MWCNTs alone.