Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(27): e2305779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764279

RESUMO

Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.

2.
Small ; 19(49): e2303974, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590380

RESUMO

Exploring highly efficient hydrogen evolution reaction (HER) electrocatalysts for large-scale water electrolysis in the full potential of hydrogen (pH) range is highly desirable, but it remains a significant challenge. Herein, a simple pathway is proposed to synthesize a hybrid electrocatalyst by decorating small metallic platinum (Pt) nanosheets on a large nickel telluride nanosheet (termed as PtNs /NiTe-Ns). The as-prepared PtNs /NiTe-Ns catalyst only requires overpotentials of 72, 162, and 65 mV to reach a high current density of 200 mA cm-2 in alkaline, neutral and acidic conditions, respectively. Theoretical calculations reveal that the combination of metallic Pt and NiTe-Ns subtly modulates the electronic redistribution at their interface, improves the charge-transfer kinetics, and enhances the performance of Ni active sites. The synergy between the Pt site and activated Ni site near the interface in PtNs /NiTe-Ns promotes the sluggish water-dissociation kinetics and optimizes the subsequent oxyhydrogen/hydrogen intermediates (OH*/H*) adsorption, accelerating the HER process. Additionally, the superhydrophilicity and superaerophobicity of PtNs /NiTe-Ns facilitate the mass transfer process and ensure the rapid desorption of generated bubbles, significantly enhancing overall alkaline water/saline water/seawater electrolysis catalytic activity and stability.

3.
J Am Chem Soc ; 144(3): 1174-1186, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34935380

RESUMO

Real bifunctional electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction have to be the ones that exhibit a steady configuration during/after reaction without irreversible structural transformation or surface reconstruction. Otherwise, they can be termed as "precatalysts" rather than real catalysts. Herein, through a strongly atomic metal-support interaction, single-atom dispersed catalysts decorating atomically dispersed Ru onto a nickel-vanadium layered double hydroxide (LDH) scaffold can exhibit excellent HER and OER activities. Both in situ X-ray absorption spectroscopy and operando Raman spectroscopic investigation clarify that the presence of atomic Ru on the surface of nickel-vanadium LDH is playing an imperative role in stabilizing the dangling bond-rich surface and further leads to a reconstruction-free surface. Through strong metal-support interaction provided by nickel-vanadium LDH, the significant interplay can stabilize the reactive atomic Ru site to reach a small fluctuation in oxidation state toward cathodic HER without reconstruction, while the atomic Ru site can stabilize the Ni site to have a greater structural tolerance toward both the bond constriction and structural distortion caused by oxidizing the Ni site during anodic OER and boost the oxidation state increase in the Ni site that contributes to its superior OER performance. Unlike numerous bifunctional catalysts that have suffered from the structural reconstruction/transformation for adapting the HER/OER cycles, the proposed Ru/Ni3V-LDH is characteristic of steady dual reactive sites with the presence of a strong metal-support interaction (i.e., Ru and Ni sites) for individual catalysis in water splitting and is revealed to be termed as a real bifunctional electrocatalyst.

4.
Chem Commun (Camb) ; 59(15): 2153-2156, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36727577

RESUMO

We propose a strategy to etch dopants to construct Mo2C with more unsaturated coordination of Mo atoms and lattice distortion for enhanced catalytic activity. It is more effective than doping and etching pure Mo2C and provides a novel strategy for the preparation of catalysts with high catalytic activity.

5.
ACS Nano ; 17(11): 10906-10917, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260372

RESUMO

Metal-organic frameworks (MOFs) show great promise for electrocatalysis owing to their tunable ligand structures. However, the poor stability of MOFs impedes their practical applications. Unlike the general pathway for engineering ligands, we report herein an innovative strategy for leveraging metal nodes to improve both the catalytic activity and the stability. Our electrolysis cell with a NiRh-MOF||NiRh-MOF configuration exhibited 10 mA cm-2 at an ultralow cell voltage of 0.06 V in alkaline seawater (with 0.3 M N2H4), outperforming its counterpart benchmark Pt/C||Pt/C cell (0.12 V). Impressively, the incorporation of Rh into a MOF secured a robust stability of over 60 h even when working in the seawater electrolyte. Experimental results and theoretical calculations revealed that Rh atoms serve as the active sites for hydrogen evolution while Ni nodes are responsible for the hydrazine oxidation during the hydrazine oxidation assisted seawater splitting. This work provides a paradigm for green hydrogen generation from seawater.

6.
ACS Appl Mater Interfaces ; 14(45): 50783-50793, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331553

RESUMO

The design of bifunctional electrocatalysts for hydrogen and oxygen evolution reactions delivering excellent catalytic activity and stability is highly desirable, yet challenged. Herein, we report an amorphous RuO2-encapsulated crystalline Ni0.85Se nanorod structure (termed as a/c-RuO2/Ni0.85Se) for enhanced HER and OER activities. The as-prepared a/c-RuO2/Ni0.85Se nanorods not only demonstrate splendid HER activity (58 mV@10 mA cm-2 vs RHE), OER activity (233 mV@10 mA cm-2 vs RHE), and electrolyzer activity (1.488 V@10 mA cm-2 vs RHE for overall water splitting) but also exhibit long-term stability with negligible performance decay after 50 h continuous test for overall water splitting. In addition, the variation of the d-band center (from the perspective of bonding and antibonding states) is unveiled theoretically by density functional theory calculations upon amorphous RuO2 layers coupling to clarify the increased hydrogen species adsorption for HER activity enhancement. This work represents a new pathway for the fabrication of bifunctional electrocatalysts toward green hydrogen generation.

7.
Research (Wash D C) ; 2022: 9837109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935128

RESUMO

Electrocatalytic urea oxidation reaction (UOR) is regarded as an effective yet challenging approach for the degradation of urea in wastewater into harmless N2 and CO2. To overcome the sluggish kinetics, catalytically active sites should be rationally designed to maneuver the multiple key steps of intermediate adsorption and desorption. Herein, we demonstrate that metal-organic frameworks (MOFs) can provide an ideal platform for tailoring binary active sites to facilitate the rate-determining steps, achieving remarkable electrocatalytic activity toward UOR. Specifically, the MOF (namely, NiMn0.14-BDC) based on Ni/Mn sites and terephthalic acid (BDC) ligands exhibits a low voltage of 1.317 V to deliver a current density of 10 mA cm-2. As a result, a high turnover frequency (TOF) of 0.15 s-1 is achieved at a voltage of 1.4 V, which enables a urea degradation rate of 81.87% in 0.33 M urea solution. The combination of experimental characterization with theoretical calculation reveals that the Ni and Mn sites play synergistic roles in maneuvering the evolution of urea molecules and key reaction intermediates during the UOR, while the binary Ni/Mn sites in MOF offer the tunability for electronic structure and d-band center impacting on the intermediate evolution. This work provides important insights into active site design by leveraging MOF platform and represents a solid step toward highly efficient UOR with MOF-based electrocatalysts.

8.
Sci Bull (Beijing) ; 67(17): 1763-1775, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546062

RESUMO

Anodic urea oxidation reaction (UOR) is an intriguing half reaction that can replace oxygen evolution reaction (OER) and work together with hydrogen evolution reaction (HER) toward simultaneous hydrogen fuel generation and urea-rich wastewater purification; however, it remains a challenge to achieve overall urea electrolysis with high efficiency. Herein, we report a multifunctional electrocatalyst termed as Rh/NiV-LDH, through integration of nickel-vanadium layered double hydroxide (LDH) with rhodium single-atom catalyst (SAC), to achieve this goal. The electrocatalyst delivers high HER mass activity of 0.262 A mg-1 and exceptionally high turnover frequency (TOF) of 2.125 s-1 at an overpotential of 100 mV. Moreover, exceptional activity toward urea oxidation is addressed, which requires a potential of 1.33 V to yield 10 mA cm-2, endorsing the potential to surmount the sluggish OER. The splendid catalytic activity is enabled by the synergy of the NiV-LDH support and the atomically dispersed Rh sites (located on the Ni-V hollow sites) as evidenced both experimentally and theoretically. The self-supported Rh/NiV-LDH catalyst serving as the anode and cathode for overall urea electrolysis (1 mol L-1 KOH with 0.33 mol L-1 urea as electrolyte) only requires a small voltage of 1.47 V to deliver 100 mA cm-2 with excellent stability. This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.


Assuntos
Eletrólise , Ureia , Nitrogênio da Ureia Sanguínea , Hidrogênio , Hidróxidos , Oxigênio
9.
Nanoscale ; 12(36): 18710-18720, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32896842

RESUMO

Exploration of highly efficient and stable photocatalysts for water splitting has attracted much attention. However, developing a facile and effective approach to enhance the photocatalytic activity for practical applications is still highly challenging. Herein, we report a newly-fabricated perovskite oxide (Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3) decorated with Au ultrafine nanoparticles for photocatalytic water splitting. An exceptionally high hydrogen evolution rate of 1618 µmol g-1 h-1 was achieved (under 2 h illumination) when the Au mass loading was optimized to 9.3 wt%, which is 540 times higher than that of the pristine one. The splendid photocatalytic activity of the sample was attributed to plasmon-excited hot electron injection from Au to Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3 (PBSCF) under illumination. The finite-difference time-domain simulations (FDTD) demonstrated that the localized strong electric field formed at the interface between Au and PBSCF under illumination, enables the hot electrons to be energetic and make the injection possible.

10.
ACS Appl Mater Interfaces ; 12(37): 41259-41268, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32841005

RESUMO

Perovskite oxides have been recognized as one of the most attractive oxygen evolution reaction (OER) catalysts because of their low cost, earth abundance, and robust nature. Herein, one-dimensional porous LaFe1-xNixO3 (LFNO) perovskite oxide nanofibers (LFNO NFs) are fabricated with a feasible electrospinning route and its further post-calcination treatment. By tailoring the atomic percent of Fe and Ni in the perovskite oxide, we determined that LaFe0.25Ni0.75O3 (LFNO-III) NFs afford the best OER activity among all the prepared perovskite oxides. Especially remarkable is that the further selenide-doped LaFe0.25Ni0.75O3 (LFNOSe-III) NFs exhibit outstanding OER activity with a low overpotential of 287 mV at 10 mA cm-2 and a small Tafel slope of 87 mV dec-1 in 1 M KOH solution, markedly exceeding that of the parent perovskite oxide and the commercial RuO2. It also delivers decent durability with no significant degradation after 22 h of stability test. In the meanwhile, density functional theory calculations are also conducted to justify the optimized adsorption features of *OH, *O, and *OOH intermediates and unveil that the electrocatalytic active sites are the Ni atoms adjacent to Fe in the Ni- and Se codoped perovskite. This work provides an effective method for the development of highly efficient perovskite oxide catalysts.

11.
Nanoscale ; 11(42): 19959-19968, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31603162

RESUMO

Hydrogen, regarded as one of the most promising green and sustainable energy resources, could be generated by splitting water with electrochemical methods. The challenge for efficient hydrogen generation is the sluggish kinetics at the anodes for the oxygen evolution reaction (OER). Here, a novel catalyst with remarkably enhanced OER activity was prepared by coupling FeOOH and NiCoP/C. The enhanced OER activity of the hybrid catalyst should be ascribed to the synergistic effect of the individual components. First, NiCoP/C derived from ZIF-67 with a hollow rhombic dodecahedral architecture not only allows exposure of numerous active sites but also provides high conductivity. Second, the re-localization of electrons at the coupling interface optimizes the adsorption/desorption nature of intermediate oxygenated species and imparts a high OER activity. The hybrid NiCoP/C@FeOOH catalyst exhibits very high OER activity with a low overpotential of 271 mV for producing a current density of 10 mA cm-2 in 1 M KOH aqueous solution, markedly surpassing the individual counterparts of pure NiCoP/C nanocages and bare FeOOH. This work represents a universal strategy for boosting the OER kinetics of catalysts and pushing boundaries for high-efficiency water oxidation.

12.
ACS Appl Mater Interfaces ; 11(40): 36649-36657, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31535845

RESUMO

Designing high efficient and noble metal-free bifunctional electrocatalysts for both hydrogen and oxygen generation is still critical and challenged. In this study, hierarchical dodecahedral-structured CoP/CN@MoS2 is prepared through a two-step calcination treatment and a solvothermal approach. The metal-organic framework of ZIF-67 is chosen to serve as the template and for providing Co sources, in which ZIF-67 is first transformed to Co nanoparticles embedded in nitrogen-doped carbon polyhedrons and then transformed to CoP/CN. MoS2 nanosheets are further grown on the surface of dodecahedral-structured CoP/CN with a solvothermal method. Benefiting from the synergistic coupling effect of CoP and MoS2 and the nitrogen-doped carbon matrix, advanced hydrogen evolution reaction (HER) both in acid and alkaline solution as well as splendid oxygen evolution reaction (OER) performance in alkaline aqueous were achieved. Moreover, the coupling effect of CoP/CN and MoS2 is disclosed theoretically by density functional theory calculations to validate the increased HER activity. The as-prepared hybrid CoP/CN@MoS2 not only exhibits decent HER activity in acidic (η10 = 144 mV) and alkaline solutions (η10 = 149 mV), but also exhibits splendid OER activity (η10 = 289 mV) in 1.0 M KOH. This work represents a solid step toward boosting the electrocatalytic kinetics of nonprecious catalysts.

13.
ACS Appl Mater Interfaces ; 11(8): 8106-8114, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30702854

RESUMO

High-efficient electrocatalysts are crucial for fuel cell applications; however, the whole cell performance is generally restricted by the anodic part because of the sluggish kinetics involved in the oxygen evolution reaction (OER) process. Herein, a hierarchical hollow (Co,Ni)Se2@NiFe layered double hydroxide (LDH) nanocage was synthesized by deriving from the metal-organic framework (MOF) of ZIF-67. Concretely, it involves first fabrication of hollow rhombic (Co,Ni)Se2 nanocages and then deposition of NiFe LDH nanosheets on the surface of nanocages. Notably, the incorporation of Ni into Co-based ZIF-67 (via ion-exchange) could tail the atomic arrangement of the MOF, exposing more additional active sites in the following selenization treatment. The as-synthesized (Co,Ni)Se2@NiFe LDH demonstrates splendid OER performance with a small overpotential of 277 mV (to launch a current density of 10 mA cm-2), a small Tafel slope of 75 mV dec-1, and robust durability (a slight stability decay of 5.1% after 17 h of continuous test), not only surpassing the commercial RuO2 but also being comparable/superior to most reported nonprevious metal-based catalysts. Upon analysis, the outstanding OER performance is attributed to the optimized adsorption/desorption nature of iron and nickel/cobalt toward the oxygenated species and partial delocalization of spin status at the interface via the bridging O2-. This work represents a solid step toward exploration of advanced catalysts with deliberate experimental design and/or atom tailoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA