Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477088

RESUMO

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Assuntos
Neoplasias Colorretais , Interleucina-6 , Humanos , Interleucina-6/efeitos adversos , Interleucina-6/metabolismo , Fosforilação , beta Catenina/metabolismo , Via de Sinalização Wnt , Janus Quinase 2/metabolismo , Neoplasias Colorretais/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Cell Commun Signal ; 22(1): 89, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297380

RESUMO

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR). As an adaptive cellular response to hostile microenvironments, such as hypoxia, nutrient deprivation, oxidative stress, and chemotherapeutic drugs, the UPR is activated in diverse cancer types and functions as a dynamic tumour promoter in cancer development; this role of the UPR indicates that regulation of the UPR can be utilized as a target for tumour treatment. T-cell exhaustion mainly refers to effector T cells losing their effector functions and expressing inhibitory receptors, leading to tumour immune evasion and the loss of tumour control. Emerging evidence suggests that the UPR plays a crucial role in T-cell exhaustion, immune evasion, and resistance to immunotherapy. In this review, we summarize the molecular basis of UPR activation, the effect of the UPR on immune evasion, the emerging mechanisms of the UPR in chemotherapy and immunotherapy resistance, and agents that target the UPR for tumour therapeutics. An understanding of the role of the UPR in immune evasion and therapeutic resistance will be helpful to identify new therapeutic modalities for cancer treatment. Video Abstract.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Microambiente Tumoral
3.
Cancer Sci ; 114(6): 2306-2317, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36793241

RESUMO

Tumor-associated macrophages (TAMs) are one of the most abundant immunosuppressive cells in the tumor microenvironment and possess crucial functions in facilitating tumor progression. Emerging evidence indicates that altered metabolic properties in cancer cells support the tumorigenic functions of TAMs. However, the mechanisms and mediators the underly the cross-talk between cancer cells and TAMs remain largely unknown. In the present study, we revealed that high solute carrier family 3 member 2 (SLC3A2) expression in lung cancer patients was associated with TAMs and poor prognosis. Knockdown of SLC3A2 in lung adenocarcinoma cells impaired M2 polarization of macrophages in a coculture system. Using metabolome analysis, we identified that SLC3A2 knockdown altered the metabolism of lung cancer cells and changed multiple metabolites, including arachidonic acid, in the tumor microenvironment. More importantly, we showed that arachidonic acid was responsible for SLC3A2-mediated macrophage polarization in the tumor microenvironment to differentiate into M2 type both in vitro and in vivo. Our data illustrate previously undescribed mechanisms responsible for TAM polarization and suggest that SLC3A2 acts as a metabolic switch on lung adenocarcinoma cells to induce macrophage phenotypic reprogramming through arachidonic acid.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Macrófagos Associados a Tumor/patologia , Ácido Araquidônico/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Adenocarcinoma de Pulmão/patologia , Microambiente Tumoral , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo
4.
BMC Med ; 21(1): 268, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488535

RESUMO

BACKGROUND: Tumour-infiltrating lymphocytes (TILs), including T and B cells, have been demonstrated to be associated with tumour progression. However, the different subpopulations of TILs and their roles in breast cancer remain poorly understood. Large-scale analysis using multiomics data could uncover potential mechanisms and provide promising biomarkers for predicting immunotherapy response. METHODS: Single-cell transcriptome data for breast cancer samples were analysed to identify unique TIL subsets. Based on the expression profiles of marker genes in these subsets, a TIL-related prognostic model was developed by univariate and multivariate Cox analyses and LASSO regression for the TCGA training cohort containing 1089 breast cancer patients. Multiplex immunohistochemistry was used to confirm the presence of TIL subsets in breast cancer samples. The model was validated with a large-scale transcriptomic dataset for 3619 breast cancer patients, including the METABRIC cohort, six chemotherapy transcriptomic cohorts, and two immunotherapy transcriptomic cohorts. RESULTS: We identified two TIL subsets with high expression of CD103 and LAG3 (CD103+LAG3+), including a CD8+ T-cell subset and a B-cell subset. Based on the expression profiles of marker genes in these two subpopulations, we further developed a CD103+LAG3+ TIL-related prognostic model (CLTRP) based on CXCL13 and BIRC3 genes for predicting the prognosis of breast cancer patients. CLTRP-low patients had a better prognosis than CLTRP-high patients. The comprehensive results showed that a low CLTRP score was associated with a high TP53 mutation rate, high infiltration of CD8 T cells, helper T cells, and CD4 T cells, high sensitivity to chemotherapeutic drugs, and a good response to immunotherapy. In contrast, a high CLTRP score was correlated with a low TP53 mutation rate, high infiltration of M0 and M2 macrophages, low sensitivity to chemotherapeutic drugs, and a poor response to immunotherapy. CONCLUSIONS: Our present study showed that the CLTRP score is a promising biomarker for distinguishing prognosis, drug sensitivity, molecular and immune characteristics, and immunotherapy outcomes in breast cancer patients. The CLTRP could serve as a valuable tool for clinical decision making regarding immunotherapy.


Assuntos
Neoplasias da Mama , Linfócitos do Interstício Tumoral , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Humanos , Prognóstico , Antineoplásicos/uso terapêutico
5.
Cancer Sci ; 113(2): 565-575, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807493

RESUMO

Colitis-associated colorectal cancer (CAC) arises due to prolonged inflammation and has distinct molecular events compared with sporadic colorectal cancer (CRC). Although inflammatory NF-κB signaling was activated by pro-inflammatory cytokines (such as TNFα) in early stages of CAC, Wnt/ß-catenin signaling later appears to function as a key regulator of CAC progression. However, the exact mechanism responsible for the cross-regulation between these 2 pathways remains unclear. Here, we found reciprocal inhibition between NF-κB and Wnt/ß-catenin signaling in CAC samples, and the Dvl2, an adaptor protein of Wnt/ß-catenin signaling, is responsible for NF-κB inhibition. Mechanistically, Dvl2 interacts with the C-terminus of tumor necrosis factor receptor 1 (TNFRI) and mediates TNFRI endocytosis, leading to NF-κB signal inhibition. In addition, increased infiltration of the pro-inflammatory cytokine interleukin-13 (IL-13) is responsible for upregulating Dvl2 expression through STAT6. Targeting STAT6 effectively decreases Dvl2 levels and restrains colony formation of cancer cells. These findings demonstrate a unique role for Dvl2 in TNFRI endocytosis, which facilitates the coordination of NF-κB and Wnt to promote CAC progression.


Assuntos
Neoplasias Associadas a Colite/metabolismo , Proteínas Desgrenhadas/metabolismo , NF-kappa B/metabolismo , Proteínas Wnt/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/patologia , Citocinas/metabolismo , Progressão da Doença , Proteínas Desgrenhadas/genética , Endocitose , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
6.
Biochem Biophys Res Commun ; 630: 175-182, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36155064

RESUMO

Lung adenocarcinoma (LUAD) is the most common type of lung cancers, which remains the leading cause of cancer-related death worldwide. Drebrin can promote cell migration and invasion with poor prognosis, but its roes in LUAD tumor progression remains unknown. We showed that the expression of Drebrin was upregulated in clinical LUAD samples. A Kaplan-Meier survival analysis showed that a high expression of Drebrin predicated poor prognosis in LUAD. In vitro, Drebrin promoted anchorage-independent growth and migration of LUAD cells. Drebrin interacted with dynamin through CT domain, and served as an adaptor to promote LUAD cell migration through inducing integrin ß1 endocytosis. Thus, this study demonstrated the critical role of Drebrin in LUAD and associated mechanism.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Neuropeptídeos , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Endocitose , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Neoplasias Pulmonares/patologia , Neuropeptídeos/genética
7.
BMC Cancer ; 22(1): 230, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236310

RESUMO

BACKGROUND: Natural killer (NK) cells-based therapies are one of the most promising strategies against cancer. The aim of this study is to investigate the natural killer cell related genes and its prognostic value in glioma. METHODS: The Chinese Glioma Genome Atlas (CGGA) was used to develop the natural killer cell-related signature. Risk score was built by multivariate Cox proportional hazards model. A cohort of 326 glioma samples with whole transcriptome expression data from the CGGA database was included for discovery. The Cancer Genome Atlas (TCGA) datasets was used for validation. GO and KEGG were used to reveal the biological process and function associated with the natural killer cell-related signature. We also collected the clinical pathological features of patients with gliomas to analyze the association with tumor malignancy and patients' survival. RESULTS: We screened for NK-related genes to build a prognostic signature, and identified the risk score based on the signature. We found that NK-related risk score was independent of various clinical factors. Nature-killer cell gene expression is correlated with clinicopathological features of gliomas. Innovatively, we demonstrated the tight relation between the risk score and immune checkpoints, and found NK-related risk score combined with PD1/PDL1 patients could predict the patient outcome. CONCLUSION: Natural killer cell-related gene signature can predict malignancy of glioma and the survival of patients, these results might provide new view for the research of glioma malignancy and individual immunotherapy.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Glioma/genética , Células Matadoras Naturais/metabolismo , Adulto , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Prognóstico , Fatores de Risco , Transcriptoma/genética
8.
J Cell Mol Med ; 25(4): 2163-2175, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33345387

RESUMO

Pancreatic cancer is a highly malignant tumour of the digestive tract which is difficult to diagnose and treat. Approximately 90% of cases arise from ductal adenocarcinoma of the glandular epithelium. The morbidity and mortality of the disease have increased significantly in recent years. Its 5-year survival rate is <1% and has one of the worst prognoses amongst malignant tumours. Pancreatic cancer has a low rate of early-stage diagnosis, high surgical mortality and low cure rate. Selenium compounds produced by selenoamino acid metabolism may promote a large amount of oxidative stress and subsequent unfolded reactions and endoplasmic reticulum stress by consuming the NADPH in cells, and eventually lead to apoptosis, necrosis or necrotic cell death. In this study, we first identified DIAPH3 as a highly expressed protein in the tissues of patients with pancreatic cancer, and confirmed that DIAPH3 promoted the proliferation, anchorage-independent growth and invasion of pancreatic cancer cells using overexpression and interference experiments. Secondly, bioinformatics data mining showed that the potential proteins interacted with DIAPH3 were involved in selenoamino acid metabolism regulation. Selenium may be incorporated into selenoprotein synthesis such as TrxR1 and GPX4, which direct reduction of hydroperoxides or resist ferroptosis, respectively. Our following validation confirmed that DIAPH3 promoted selenium content and interacted with the selenoprotein RPL6, a ribosome protein subunit involved in selenoamino acid metabolism. In addition, we verified that DIAPH3 could down-regulate cellular ROS level via up-regulating TrxR1 expression. Finally, nude mice xenograft model experimental results demonstrate DIAPH3 knock down could decrease tumour growth and TrxR1 expression and ROS levels in vivo. Collectively, our observations indicate DIAPH3 could promote pancreatic cancer progression by activating selenoprotein TrxR1-mediated antioxidant effects.


Assuntos
Antioxidantes/metabolismo , Forminas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Selenoproteínas/metabolismo , Tiorredoxina Redutase 1/metabolismo , Aminoácidos , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Forminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Espécies Reativas de Oxigênio/metabolismo
10.
J Cell Mol Med ; 23(9): 6060-6071, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211507

RESUMO

The integrated stress response (ISR) is critical for cancer cell survival during stress stimuli and has been implicated in the resistance to cancer therapeutics, in which the mechanism, however, is poorly understood. Here, we showed that paclitaxel, the major chemotherapy drug for breast cancer, induced ISR and phosphorylated ser51 residue of EIF2S1 by EIF2AK3 and EIF2AK4. When exposed to paclitaxel, cancer cells activated the EIF2AK3/EIF2AK4-pEIF2S1-ATF4 axis and maintained redox homoeostasis by inducing expression of the major antioxidant enzymes HMOX1, SHMT2 and SLC7A11. Paclitaxel-mediated cell death was significantly increased following loss of ISR or ATF4 expression. This sensitizing effect could be partially rescued by Trolox, a ROS scavenger. We demonstrated that the alternative initiation factor EIF2A was essential for cancer cell survival after paclitaxel-mediated ISR both in vitro and in vivo. Moreover, patients with breast cancer exhibited higher ISR after chemotherapy, and the elevated mRNA levels of HMOX1, SHMT2 and EIF2A were correlated with poor prognosis. Collectively, our findings reveal a novel mechanism for paclitaxel resistance and suggest that targeting EIF2A combined with ISR agonist may be a potential treatment regimen to overcome drug resistance for breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator de Iniciação 2 em Eucariotos/genética , Paclitaxel/farmacologia , Proteínas Serina-Treonina Quinases/genética , eIF-2 Quinase/genética , Fator 4 Ativador da Transcrição/genética , Sistema y+ de Transporte de Aminoácidos/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina Hidroximetiltransferase/genética , Heme Oxigenase-1/genética , Xenoenxertos , Humanos , Paclitaxel/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA