Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Cent Sci ; 5(11): 1857-1865, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31807687

RESUMO

Two-dimensional (2D) hybrid perovskite sandwiched between two long-chain organic layers is an emerging class of low-cost semiconductor materials with unique optical properties and improved moisture stability. Unlike conventional semiconductors, ion migration in perovskite is a unique phenomenon possibly responsible for long carrier lifetime, current-voltage hysteresis, and low-frequency giant dielectric response. While there are many studies of ion migration in bulk hybrid perovskite, not much is known for its 2D counterparts, especially for ion migration induced by light excitation. Here, we construct an exfoliated 2D perovskite/carbon nanotube (CNT) heterostructure field effect transistor (FET), not only to demonstrate its potential in photomemory applications, but also to study the light induced ion migration mechanisms. We show that the FET I-V characteristic curve can be regulated by light and shows two opposite trends under different CNT oxygen doping conditions. Our temperature-dependent study indicates that the change in the I-V curve is probably caused by ion redistribution in the 2D hybrid perovskite. The first principle calculation shows the reduction of the migration barrier of I vacancy under light excitation. The device simulation shows that the increase of 2D hybrid perovskite dielectric constant (enabled by the increased ion migration) can change the I-V curve in the trends observed experimentally. Finally, the so synthesized FET shows the multilevel photomemory function. Our work shows that not only we could understand the unique ion migration behavior in 2D hybrid perovskite, it might also be used for many future memory function related applications not realizable in traditional semiconductors.

2.
Sci Rep ; 8(1): 5107, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572513

RESUMO

Graphene-based optoelectronic devices have attracted much attention due to their broadband photon responsivity and fast response time. However, the performance of such graphene-based photodetectors is greatly limited by weak light absorption and low responsivity induced by the gapless nature of graphene. Here, we achieved a high responsivity above 103 AW-1 for Ultraviolet (UV) light in a hybrid structure based phototransistor, which consists of CVD-grown monolayer graphene and ZnSe/ZnS core/shell quantum dots. The photodetectors exhibit a selective photo responsivity for the UV light with the wavelength of 405 nm, confirming the main light absorption from QDs. The photo-generated charges have been found to transfer from QDs to graphene channel, leading to a gate-tunable photo responsivity with the maximum value obtained at V G about 15V. A recirculate 100 times behavior with a good stability of 21 days is demonstrated for our devices and another flexible graphene/QDs based photoconductors have been found to be functional after 1000 bending cycles. Such UV photodetectors based on graphene decorated with cadmium-free ZnSe/ZnS quantum dots offer a new way to build environmental friendly optoelectronics.

3.
ACS Appl Mater Interfaces ; 8(45): 31289-31294, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27781430

RESUMO

A flexible photodetector based on the bulk heterojunction of an organometallic halide perovskites CH3NH3PbI3 and an organic dye Rhodamine B (RhB) has been fabricated via a solution casting process. It showed a high responsivity (Rmax = 43.6 mA/W) to visible lights, short response time (tr ≈ 60 ms, td ≈ 40 ms), high on-off ratio (Ion/Ioff ≈ 287) and satisfactory stability because of its Schottky barrier structure and the dye enhanced light absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA