Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Microdevices ; 24(4): 41, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399220

RESUMO

Lung cancer is the leading cause of cancer death in the United States. It has the lowest 5-year survival rate among the most common cancers and therefore, early diagnosis is critical to improve the survival rate. In this paper, a new handheld electronic device is proposed to detect nine lung cancer biomarkers in the exhaled breath. An electrochemical gas sensor was produced through deposition of a thin layer of graphene and Prussian blue on a chromium-modified silicon substrate. Selective binding of the analyte was formed by molecular imprinting polymer (MIP). Subsequent polymerization and removal of the analyte yielded a layer of a conductive polymer on top of the sensor containing molecularly imprinted cavities selective for the target molecule. The sensors were tested over 1-20 parts per trillion (ppt) level of concentration while the sensor resistance has been monitored as the sensors react to the analyte by resistance change. Pentane sensor was also tested for selectivity. A printed circuit board was designed to measure the resistance of each sensor and send the data to a developed application in smartphone through Bluetooth. This handheld device has the potential to be used as a diagnostic method in the near future.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Humanos , Polímeros/química , Neoplasias Pulmonares/diagnóstico , Pulmão , Eletrônica
2.
IEEE J Solid-State Circuits ; 57(11): 3324-3335, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36467393

RESUMO

This paper presents a fully integrated RF energy harvester (EH) with 30% end-to-end power harvesting efficiency (PHE) and supports high output voltage operation, up to 9.3V, with a 1.07 GHz input and under the electrode model for neural applications. The EH is composed of a novel 10-stage self-biased gate (SBG) rectifier with an on-chip matching network. The SBG topology elevates the gate-bias of transistors in a non-linear manner to enable higher conductivity. The design also achieves >20% PHE range of 12-dB. The design was fabricated in 65 nm CMOS technology and occupies an area of 0.0732-mm2 with on-chip matching network. In addition to standalone EH characterization measurement results, animal tissue stimulation test was performed to evaluate its performance in a realistic neural implant application.

3.
IEEE Open J Circuits Syst ; 3: 82-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647555

RESUMO

This paper reviews and analyses the design of popular radio frequency energy harvesting systems and proposes a method to qualitatively and quantitatively analyze their circuit architectures using new square-wave approximation method. This approach helps in simplifying design analysis. Using this analysis, we can establish no load output voltage characteristics, upper limit on rectifier efficiency, and maximum power characteristics of a rectifier. This paper will help guide the design of RF energy harvesting rectifier circuits for radio frequency identification (RFIDs), the Internet of Things (IoTs), wearable, and implantable medical device applications. Different application scenarios are explained in the context of design challenges, and corresponding design considerations are discussed in order to evaluate their performance. The pros and cons of different rectifier topologies are also investigated. In addition to presenting the popular rectifier topologies, new measurement results of these energy harvester topologies, fabricated in 65nm, 130nm and 180nm CMOS technologies are also presented.

4.
Adv Mater ; 34(15): e2108790, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132680

RESUMO

Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2 Te3 /Ni80 Fe20 because of diffusion of Ni in Bi2 Te3 (Ni-Bi2 Te3 ). The AFM property of the Ni-Bi2 Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2 Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2 Te4 in the Ni-Bi2 Te3 interface layer. The Neél temperature of the Ni-Bi2 Te3 layer is ≈63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6167-6170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892524

RESUMO

A novel magnetoelectric (ME) antenna is fabricated to be integrated to the on-chip energy harvesting circuit for brain-computer interface applications. The proposed ME antenna resonates at the frequency of 2.57 GHz while providing a bandwidth of 3.37 MHz. The proposed rectangular ME antenna wireless power transfer efficiency is 0.304 %, which is considerably higher than that of micro-coils.Clinical Relevance- This provides a suitable energy harvesting efficiency for wirelessly powering up the brain implant devices.


Assuntos
Interfaces Cérebro-Computador , Tecnologia sem Fio , Próteses e Implantes
6.
Nat Commun ; 12(1): 5453, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526513

RESUMO

Strongly correlated oxides with a broken symmetry could exhibit various phase transitions, such as superconductivity, magnetism and ferroelectricity. Construction of superlattices using these materials is effective to design crystal symmetries at atomic scale for emergent orderings and phases. Here, antiferromagnetic Ruddlesden-Popper Sr2IrO4 and perovskite paraelectric (ferroelectric) SrTiO3 (BaTiO3) are selected to epitaxially fabricate superlattices for symmetry engineering. An emergent magnetoelectric phase transition is achieved in Sr2IrO4/SrTiO3 superlattices with artificially designed ferroelectricity, where an observable interfacial Dzyaloshinskii-Moriya interaction driven by non-equivalent interface is considered as the microscopic origin. By further increasing the polarization namely interfacial Dzyaloshinskii-Moriya interaction via replacing SrTiO3 with BaTiO3, the transition temperature can be enhanced from 46 K to 203 K, accompanying a pronounced magnetoelectric coefficient of ~495 mV/cm·Oe. This interfacial engineering of Dzyaloshinskii-Moriya interaction provides a strategy to design quantum phases and orderings in correlated electron systems.

7.
Alzheimers Dement (Amst) ; 12(1): e12088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088894

RESUMO

INTRODUCTION: Novel sensors were developed to detect exhaled volatile organic compounds to aid in the diagnosis of mild cognitive impairment associated with early stage Alzheimer's disease (AD). The sensors were sensitive to a rat model that combined the human apolipoprotein E (APOE)4 gene with aging and the Western diet. METHODS: Gas sensors fabricated from molecularly imprinted polymer-graphene were engineered to react with alkanes and small fatty acids associated with lipid peroxidation. With a detection sensitivity in parts per trillion the sensors were tested against the breath of wild-type and APOE4 male rats. Resting state BOLD functional connectivity was used to assess hippocampal function. RESULTS: Only APOE4 rats, and not wild-type controls, tested positive to several small hydrocarbons and presented with reduced functional coupling in hippocampal circuitry. DISCUSSION: These results are proof-of-concept toward the development of sensors that can be used as breath detectors in the diagnosis, prognosis, and treatment of presymptomatic AD.

8.
Materials (Basel) ; 12(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337062

RESUMO

The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems.

9.
Nat Commun ; 8(1): 296, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831042

RESUMO

State-of-the-art compact antennas rely on electromagnetic wave resonance, which leads to antenna sizes that are comparable to the electromagnetic wavelength. As a result, antennas typically have a size greater than one-tenth of the wavelength, and further miniaturization of antennas has been an open challenge for decades. Here we report on acoustically actuated nanomechanical magnetoelectric (ME) antennas with a suspended ferromagnetic/piezoelectric thin-film heterostructure. These ME antennas receive and transmit electromagnetic waves through the ME effect at their acoustic resonance frequencies. The bulk acoustic waves in ME antennas stimulate magnetization oscillations of the ferromagnetic thin film, which results in the radiation of electromagnetic waves. Vice versa, these antennas sense the magnetic fields of electromagnetic waves, giving a piezoelectric voltage output. The ME antennas (with sizes as small as one-thousandth of a wavelength) demonstrates 1-2 orders of magnitude miniaturization over state-of-the-art compact antennas without performance degradation. These ME antennas have potential implications for portable wireless communication systems.The miniaturization of antennas beyond a wavelength is limited by designs which rely on electromagnetic resonances. Here, Nan et al. have developed acoustically actuated antennas that couple the acoustic resonance of the antenna with the electromagnetic wave, reducing the antenna footprint by up to 100.

10.
Adv Mater ; 28(42): 9370-9377, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593972

RESUMO

A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 µm that is formed by ferrite magnetic inks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA