RESUMO
A nanozyme with neighboring single-iron sites (Fe2 -SAzyme) was introduced as a bioinspired catalase mimic, featuring excellent activity under varied conditions, twice as high as that of random Fe1 -SAzyme and ultrahigh H2 O2 affinity as that of bioenzymes. Surprisingly, the interatomic spacing tuning between adjacent iron sites also suppressed the competitive peroxidase pathway, remarkably increasing the catalase/peroxidase selectivity up to ~6 times compared to Fe1 -SAzyme. This dramatically switched the catalytic activity of Fe-SAzymes from generating (i.e. Fe1 -SAzymes, preferably mimicking peroxidase) to scavenging ROS (i.e. Fe2 -SAzymes, dominantly mimicking catalase). Theoretical and experimental investigations suggested that the pairwise single-iron sites may serve as a robust molecular tweezer to efficiently trap and decompose H2 O2 into O2 , via cooperative hydrogen-bonding induced end-bridge adsorption. The versatile mechano-assisted in situ MOF capsulation strategy enabled facile access to neighboring M2 -SAzyme (M=Fe, Ir, Pt), even up to a 1000â grams scale, but with no obvious scale-up effect for both structures and performances.
Assuntos
Peroxidase , Peroxidases , Catalase , Adsorção , Corantes , Ferro , CatáliseRESUMO
As worldwide plastic pollution continues to rise, innovative ideas for effective reuse and recycling of waste plastic are needed. Single-atom catalysts (SACs), which are known for their high activity and selectivity, present unique advantages in facilitating plastic degradation and conversion. Waste plastic can be used as a support or raw material to create SACs, which reduces waste generation while simultaneously utilizing waste as a resource. This work successfully utilized waste plastic polyurethane (PU) as a support, through a unique Rapid Thermal Processing Reactor (RTPR) to synthesize an efficient Pd1/PU SACs. At 25 °C and 0.5 MPa H2, Pd1/PU displayed outstanding activity and selectivity in the hydrogenation of styrene, as well as remarkable stability. Pd1/PU performed well in hydrogenating a variety of common substrates. These findings highlight the great potential of SACs in plastic waste reuse and recycling, offering intriguing solutions to the global plastic pollution problem.
RESUMO
Hydrogen peroxide (H2O2) is one of the most valuable clean energy sources with a rapidly growing requirement in industry and daily life. The direct synthesis of H2O2 from hydrogen and oxygen is considered to be an economical and environmentally friendly manufacturing route to replace the traditional anthraquinone method, although it remains a formidable challenge owing to low H2O2 selectivity and production. Here, we report a catalyst consisting of Pd(111) nanocrystals on TiO2 modified with single Pt atoms (Pt1Pd(111)/TiO2), which displays outstanding reactivity, producing 1921.3 µmol of H2O2, a H2 conversion of 62.2% and H2O2 selectivity of 80.3% over 30 min. Kinetic and isotope experiments confirm that the extraordinary catalytic properties are due to stronger H2 activation (the rate-determining step). DFT calculations confirm that Pt1Pd(111) exhibits lower energy barriers for H2 dissociation and two-step O2 hydrogenation, but higher energy barriers for side reactions than Pt1Pd(100), demonstrating clear facet dependence and resulting in greater selectivity and amount of H2O2 produced.
RESUMO
Propane dehydrogenation (PDH) has been an outstanding technique with a bright prospect, which can meet the growing global demand for propylene. However, undesired side reactions result in the deactivation of the Pt-based catalysts, which contribute to the insufficient lifetime of the catalysts. Herein, we describe a novel catalyst by encapsulating bimetallic CoCu-modified Pt species in S-1 zeolite for efficient dehydrogenation of propane, which synergizes the confinement of zeolites and the geometric and electronic effects on Pt species for enhancing the catalyst stability. The introduction of bimetallic additives efficiently promotes the dispersion of platinum and the electron transfer between Pt species and the additives, which greatly prolongs the lifetime of the catalysts. Particularly, no obvious deactivation is observed on 0.2Pt0.3Co0.5CuK@S-1 after 93 h on stream with a weight hourly space velocity (WHSV) of 5.4 h-1, revealing an ultralow deactivation constant of 0.0011 h-1 (t = 909 h). The formation rate of propylene still maintains at a high value of 407 mol gPt-1 h-1 (WHSV = 21.6 h-1) at 580 â even after on pure propane stream for 42 h. The catalyst with the bimetallic CoCu-modified Pt species in S-1 zeolite reveals ultra-high activity and stability for PDH, which is ascribed to the highly dispersed Pt species and the stabilization effect of bimetallic additives on Pt species.
RESUMO
Atomically dispersed Fe species embedded in the nitrogen-containing carbon supports (Fe1/NC) are successfully synthesized using a ball milling approach, with commercial protein powder as the nitrogen source. The catalyst exhibits outstanding performance in the oxidation of aromatic compounds containing saturated C-H bonds into corresponding ketones under ambient conditions, which is superior to those of a nanoparticle catalyst (Fen/NC) and a metal-free catalyst (NC).
RESUMO
Indole alkaloids extract (IAAS) was prepared from leaves of Alstonia scholaris (L.) R. Br., an evergreen tropical plant widely distributed throughout the world. This plant has been used historically by the Dai ethnic people of China to treat respiratory diseases. This study evaluated the genotoxicity and safety pharmacology of IAAS to support clinical use. The bacterial reverse mutation (Ames) test, in vitro mammalian chromosomal aberration test, and in vivo mammalian erythrocyte micronucleus (MN) test were performed to evaluate genotoxicity. Mice were administered IAAS (240, 480, or 960 mg/kg bw) once orally to observe adverse central nervous system effects. Furthermore, beagle dogs were administered IAAS (10, 30, 60 mg/kg bw) once via the duodenum to evaluate its effects on the cardiovascular and respiratory systems. IAAS with or without S9-induced metabolic activation showed no genotoxicity in the Ames test up to 500 µg/plate, in the mammalian chromosomal aberration test up to 710 µg/mL, or in the MN test up to 800 mg/kg bw. No abnormal neurobehavioral effects were observed in mice following treatment with up to 960 mg/kg bw of IAAS. Moreover, blood pressure, heart rate, electrocardiogram parameters, and depth and rate of breathing in anesthetized beagle dogs did not differ among the IAAS doses or from the vehicle group. These data indicated that IAAS did not induce mutagenicity, clastogenicity, or genotoxicity, and no pharmaco-toxicological effects were observed in the respiratory, cardiovascular, or central nervous systems. Our results increased understanding of safety considerations associated with IAAS, and may indicate that IAAS is a possible drug candidate.
RESUMO
Alstonia scholaris (L.) R. Br., an evergreen tropical plant rich in indole alkaloids with significant physiological activity, is traditionally used to treat respiratory diseases in China. This study was conducted to establish the toxicity profile of the alkaloid extract (TA) of A. scholaris leaves in non-rodents. After oral administration of a single dose (4 g/kg.bw), a number of transient symptoms, such as unsteady gait, drooling, emesis, and reddening of peri-oral mucosa, were observed, but no treatment-related mortality. A sub-chronic toxicity study with a range of doses of TA (20, 60 and 120 mg/kg.bw) was conducted for a 13-week treatment period, followed by 4-week recovery observation. Except for emesis and drooling in majority of animals in 120 mg/kg.bw treatment group, no clinical changes were observed in TA-treated animals. Data from electrocardiography, bone marrow, urine, fecal, hematology and clinical chemistry analyses were comparable between TA-treated and control animals. No significant differences in the relative organ weights and histopathological characteristics were evident between the TA-treated and control groups. Accordingly, the non-observed-adverse-effect-level (NOAEL) of TA was established as 120 mg/kg.bw. Our results add further knowledge to the safety database for indole alkaloid extracts from A. scholaris with potential utility as novel drug candidates.
RESUMO
Alstonia scholaris (L.) R. Br. (Apocynaceae) is an evergreen tree that has been used to treat lung diseases. In this study, the toxicity profile of indole alkaloids from leaves of A. scholaris was investigated. In acute toxicity tests, mice were administered total alkaloids (TA) and five indole alkaloids. In a chronic toxicity test, rats were continuously administered TA (50, 100, and 300 mg/kg bw) for 13 weeks, followed by a 4-week recovery. A single administration of TA affected the behavior of mice, and at 12.8 g/kg bw, prone position, shortness of breath, wheezing, and convulsion were observed. The half-lethal dose (LD50) in mice was 5.48 g/kg bw, almost 2740 times the clinical dose in humans. Among the five indole alkaloids, the maximum tolerance dose in mice ranged from 0.75 to 4 g/kg bw. The TA-treated rats did not die and showed no adverse effects or dose-dependent changes in weight or food and water consumption, despite fluctuations in hematological and biochemical parameters compared with historical data. Furthermore, both gross and histopathological observations revealed no abnormalities in any organ. With daily oral administration to rats, the non-observed-adverse-effect-level of TA was 100 mg/kg bw. The results indicate that TA is safe for clinical use.
RESUMO
A novel hybrid material with flower-mimicking morphology was fabricated with a facile coprecipitation method, and cytochrome P450 enzyme and cobalt phosphate were employed as organic and inorganic components, respectively. The hybrid nano-flowers showed excellent catalytic performance in the oxidative coupling of benzylamine, including the high conversion (99.9%) and selectivity (97.9%) in mild reaction conditions, as well as the satisfactory stability in the recycling experiments. Compared to free enzyme, the as-obtained materials exhibited enhanced activity. Such results indicate that the hybrid materials are potentially good candidates in the industrial enzyme catalysis.