Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 290, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698040

RESUMO

BACKGROUND: Histone methylation usually plays important roles in plant development through post-translational regulation and may provide a new visual field for heterosis. The histone methyltransferase gene family has been identified in various plants, but its members and functions in hybrid wheat related in heterosis is poorly studied. RESULTS: In this study, 175 histone methyltransferase (HMT) genes were identified in wheat, including 152 histone lysine methyltransferase (HKMT) genes and 23 protein arginine methyltransferase (PRMT) genes. Gene structure analysis, physicochemical properties and subcellular localization predictions of the proteins, exhibited the adequate complexity of this gene family. As an allohexaploid species, the number of the genes (seven HKMTs orthologous groups and four PRMTs orthologous groups) in wheat were about three times than those in diploids and showed certain degrees of conservation, while only a small number of subfamilies such as ASH-like and Su-(var) subfamilies have expanded their members. Transcriptome analysis showed that HMT genes were mainly expressed in the reproductive organs. Expression analysis showed that some TaHMT genes with different trends in various hybrid combinations may be regulated by lncRNAs with similar expression trends. Pearson correlation analysis of the expression of TaHMT genes and two yield traits indicated that four DEGs may participate in the yield heterosis of two-line hybrid wheat. ChIP-qPCR results showed that the histone modifications (H3K4me3, H3K36me3 and H3K9ac) enriched in promoter regions of three TaCCA1 genes which are homologous to Arabidopsis heterosis-related CCA1/LHY genes. The higher expression levels of TaCCA1 in F1 than its parents are positive with these histone modifications. These results showed that histone modifications may play important roles in wheat heterosis. CONCLUSIONS: Our study identified characteristics of the histone methyltransferase gene family and enhances the understanding of the evolution and function of these members in allohexaploid wheat. The causes of heterosis of two-line hybrid wheat were partially explained from the perspective of histone modifications.


Assuntos
Arabidopsis , Triticum , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histona Metiltransferases/genética , Vigor Híbrido/genética , Triticum/genética
2.
BMC Genomics ; 22(1): 310, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926387

RESUMO

BACKGROUND: DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat (Triticum aestivum L.) based on genome-wide levels have not been reported. RESULTS: In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2, TaMET1-B1, and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A, an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A. CONCLUSIONS: Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat.


Assuntos
Infertilidade Masculina , Triticum , DNA , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , Metiltransferases , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Triticum/genética , Triticum/metabolismo
3.
Planta ; 247(6): 1307-1321, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29504038

RESUMO

MAIN CONCLUSION: Transcriptome analysis was carried out for wheat seedlings and spikes from hybrid Jingmai 8 and both inbred lines to unravel mechanisms underlying heterosis. Heterosis, known as one of the most successful strategies for increasing crop yield, has been widely exploited in plant breeding systems. Despite its great importance, the molecular mechanism underlying heterosis remains elusive. In the present study, RNA sequencing (RNA-seq) was performed on the seedling and spike tissues of the wheat (Triticum aestivum) hybrid Jingmai 8 (JM8) and its homozygous parents to unravel the underlying mechanisms of wheat heterosis. In total, 1686 and 2334 genes were identified as differentially expressed genes (DEGs) between the hybrid and the two inbred lines in seedling and spike tissues, respectively. Gene Ontology analysis revealed that DEGs from seedling tissues were significantly enriched in processes involved in photosynthesis and carbon fixation, and the majority of these DEGs expressed at a higher level in JM8 compared to both inbred lines. In addition, cell wall biogenesis and protein biosynthesis-related pathways were also significantly represented. These results confirmed that a combination of different pathways could contribute to heterosis. The DEGs between the hybrid and the two inbred progenitors from the spike tissues were significantly enriched in biological processes related to transcription, RNA biosynthesis and molecular function categories related to transcription factor activities. Furthermore, transcription factors such as NAC, ERF, and TIF-IIA were highly expressed in the hybrid JM8. These results may provide valuable insights into the molecular mechanisms underlying wheat heterosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Transcriptoma , Triticum/genética , Perfilação da Expressão Gênica , Ontologia Genética , Endogamia , Inflorescência/genética , Inflorescência/fisiologia , Fotossíntese , Plântula/genética , Plântula/fisiologia , Análise de Sequência de RNA , Triticum/fisiologia
4.
Int J Biol Macromol ; 225: 63-78, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481332

RESUMO

Developing cultivars with improved Pi use efficiency is essential for the sustainability of agriculture as well as the environment. Phosphate starvation response (PHR) regulators have not yet been systematically studied in wheat. This study provides the detailed characteristics of PHRs in hexaploid wheat as well as other major gramineous plants at the genome-wide level. The identified PHR proteins were divided into six subfamilies through phylogeny analysis, and a total of 63 paralogous TaPHR pairs were designated as arising from duplication events, with strong purifying selection. The promoters of TaPHRs were identified as stations for many transcription factors. Protein-protein interaction network and gene ontology enrichment analysis indicated a core biological process of cellular response to phosphate starvation. The three-dimensional structures of core PHR proteins showed a high phylogenetic relationship, but amino acid deletions in core protein domains may cause functional differentiation between rice and wheat. TaPHR3 could interact with TaSPX1 and TaSPX5 proteins, which is regarded as a novel interaction mode. Under different Pi gradient treatments, TaPHRs showed low inducible expression patterns among all subfamilies. Our study is the first to comprehensively clarify the basic properties of TaPHR proteins and might accumulate basic data for improving grain yield and environmental homeostasis.


Assuntos
Fosfatos , Triticum , Fosfatos/metabolismo , Triticum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
5.
Front Plant Sci ; 13: 946213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923880

RESUMO

The biological functions of the circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits, are poorly understood. In this study, we characterized the core clock gene CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns, which are positively regulated by rhythmic histone modifications including histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 9 acetylation (H3K9Ac), and histone H3 lysine 36 trimethylation (H3K36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike, and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing [DNA affinity purification and sequencing (DAP-seq)] indicated that TaCCA1 preferentially binds to sequences similarly to "evening elements" (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization, and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photosynthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA