Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928772

RESUMO

Conjugated linoleic acid (CLA) is a class of naturally occurring octadecadienoic acid in humans and animals and is a general term for a group of conformational and positional isomers of linoleic acid. In order to obtain the development of excellent lactic acid strains with a high production of conjugated linoleic acid, 32 strains with a possible CLA conversion ability were obtained by initial screening using UV spectrophotometry, and then the strains were re-screened by gas chromatography, and finally, the strain with the highest CLA content was obtained. The strains were optimized for cultivation by changing the amount of substrate addition, inoculum amount, and fermentation time. The results showed that the yield of the experimentally optimized strain for the conversion of conjugated linoleic acid could reach 94.68 ± 3.57 µg/mL, which was 74.4% higher than the initial yield of 54.28 ± 2.12 µg/mL of the strain. The results of this study can provide some basis for the application of conjugated linoleic acid production by Lactobacillus paracasei in the fermentation of lactic acid bacteria.

2.
Foods ; 12(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959161

RESUMO

This research investigated the impact of air plasma and high-pressure plasma treatments on corn starch. The resulting samples were characterized by particle morphology, molecular polymerization degree, molecular functional groups, and crystallinity. SEM analysis revealed that plasma treatment altered the surface morphology of corn starch, with variations observed depending on the duration of treatment. UV/Vis spectroscopy results indicated that longer plasma exposure times increased maximum absorbance values with less complete peak shapes. FTIR results demonstrated that plasma treatment disrupted the crystalline structure of starch, resulting in decreased molecular polymerization. Lastly, XRD results showed a proportional relationship between plasma treatment duration and the intensity of the diffuse peak, indicating that prolonged plasma exposure increased the amorphous nature of starch.

3.
Food Chem ; 373(Pt B): 131537, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34776312

RESUMO

Plant-based meat substitutes are emerging as healthy, balanced, and sustainable non-animal alternatives to alleviate stress from the increased demand for meat products. In this study, fibrous-like extrudates acting as meat substitutes were manufactured from soybean protein and Coprinus comatus by thermos-extrusion and fermentation processing improved the meat-like physicochemical and textural properties, taste, and flavor of products. The fermentation period was greatly shortened than animal meat-based fermented sausage. For comparison reasons, the aroma profiles of meat substitute fermented sausages (MS-FS), fermented sausages without curing (MS-NCFS) and natural fermented sausages (MS-NFS) were systemically analyzed by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). A total of 156 volatile compounds were identified, and the curing and fermenting process contributed to the increased contents of volatile compounds greatly. Moreover, the MS-FS without curing evaded undesired off-flavors like grass and bean flavor from 1-octen-3-ol. Sensory evaluation was also showed higher scores for MS-FS than other processing.


Assuntos
Produtos da Carne , Compostos Orgânicos Voláteis , Animais , Coprinus , Fermentação , Produtos da Carne/análise , Odorantes , Proteínas de Soja , Paladar
4.
Foods ; 11(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36141025

RESUMO

As a new technology for food processing, plasma has good prospects for protein modification. This study investigated the effect of plasma on the activity of the α-amylase. The composition of the active particles in air plasma generated by spark discharge was analyzed and determined. Furthermore, the quantitative analysis of the active particles such as H2O2, O3, and -OH was made by the chemical detection method. Powdered α-amylase was treated with plasma in various conditions, in which α-amylase and the variation of α-amylase activity under the action of air plasma were quantitatively analyzed. The results showed that the concentration of active particles in the system was positively correlated with the action time for air plasma. After 5 min of plasma action, the concentration of O3 and H2O2 was large enough for food disinfection, but the concentration of -OH was smaller and its lifetime was extremely short. Moreover, it was determined that the optimum action time for the activation of solid powdered α-amylase by air plasma was 120 s. With higher energy, the air plasma acts directly on solid powdered α-amylase to destroy its spatial structure, resulting in enzyme inactivation, sterilization, and disinfection.

5.
Int J Biol Macromol ; 209(Pt B): 2061-2069, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490766

RESUMO

Rice starch (RS) and soy protein (SP) were mixed at various ratios and the physicochemical, rheological and tribological properties of the resulted pastes were analyzed. Microscopy and spectral techniques were applied to follow the structural changes during cooling and heating processes. Higher proportion of SP resulted in lower swelling power. According to DSC and RVA results, SP inhibited the gelatinization of starch, leading to higher pasting temperature; the peak, trough, final viscosities, set back and enthalpy changes were decreased with increasing SP concentration. All the samples presented a shear thinning behavior and the mixtures with soy proteins showed lower viscosity, yield stress and consistency coefficient than pure starch paste. The creep-recovery test showed that the addition of soy proteins resulted in more liquid-like mixtures, causing weakening of instantaneous elastic recovery. The combination of rice starch and soy proteins increased the friction, compared with their individual components, except RS/SP 9/1 at sliding speed >20 mm/s. According to the microstructure and spectra analysis, the soy protein adhered on the surface of starch granules, which might have hindered the leaching of amylopectin; and the association between starch and soy proteins mainly occurred when the starch granules were gelatinized, which could be reinforced during starch retrogradation.


Assuntos
Oryza , Proteínas de Soja , Oryza/química , Reologia , Amido/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA