Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Langmuir ; 35(24): 7713-7719, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31122020

RESUMO

In this work, a closed thermoelectric cell based on a nanoporous graphene electrode is developed to convert low-grade thermal energy to electric energy. The thermoelectric cell consists of two nanoporous graphene electrodes in contact with the hot and cold ends, respectively, encapsulated in a KCl electrolyte, and the energy is harvested from the redistribution of the electric double layer (EDL) of the graphene electrodes under different temperatures. Because of the large specific surface and conductivity of nanoporous graphene electrodes, the electric voltage is 168.91 mV with the hot-end temperature of 61 °C and cold-end temperature of 26 °C, corresponding to the thermoelectric coefficient of 4.54 mV·°C-1, which is much larger than that of the conventional thermoelectric generator. The specific power output achieves 1.38 mW·g-1 and is also significantly larger than the previous EDL-based thermoelectric generator. System performance with the concentration of the KCl electrolyte is examined. The proposed thermoelectric cell can harvest low-grade waste heat from the ambient environment, which may have potential applications in energy supply, wireless powered devices, outdoor survival, and so forth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA