Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Liver Int ; 41(9): 2214-2227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991158

RESUMO

BACKGROUND & AIMS: The outcome of liver injury is dictated by factors that control the accumulation of myofibroblastic (activated) hepatic stellate cells (MF-HSCs) but therapies that specifically block this process have not been discovered. We evaluated the hypothesis that MF-HSCs and liver fibrosis could be safely reduced by inhibiting the cysteine/glutamate antiporter xCT. METHODS: xCT activity was disrupted in both HSC lines and primary mouse HSCs to determine its effect on HSC biology. For comparison, xCT expression and function were also determined in primary mouse hepatocytes. Finally, the roles of xCT were assessed in mouse models of liver fibrosis. RESULTS: We found that xCT mRNA levels were almost a log-fold higher in primary mouse HSCs than in primary mouse hepatocytes. Further, primary mouse HSCs dramatically induced xCT as they became MF, and inhibiting xCT blocked GSH synthesis, reduced growth and fibrogenic gene expression and triggered HSC ferroptosis. Doses of xCT inhibitors that induced massive ferroptosis in HSCs had no effect on hepatocyte viability in vitro, and xCT inhibitors reduced liver fibrosis without worsening liver injury in mice with acute liver injury. However, TGFß treatment up-regulated xCT and triggered ferroptosis in cultured primary mouse hepatocytes. During chronic liver injury, xCT inhibitors exacerbated injury, impaired regeneration and failed to improve fibrosis, confirming that HSCs and hepatocytes deploy similar mechanisms to survive chronic oxidative stress. CONCLUSIONS: Inhibiting xCT can suppress myofibroblastic activity and induce ferroptosis of MF-HSCs. However, targeting xCT inhibition to MF-HSCs will be necessary to exploit ferroptosis as an anti-fibrotic strategy.


Assuntos
Ferroptose , Células Estreladas do Fígado , Animais , Células Estreladas do Fígado/patologia , Hepatócitos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos
2.
PLoS Genet ; 11(3): e1005073, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25822261

RESUMO

Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.


Assuntos
Evolução Biológica , Especiação Genética , Infertilidade Masculina/genética , Razão de Masculinidade , Animais , Drosophila , Hibridização Genética , Masculino , Meiose , Locos de Características Quantitativas/genética , Isolamento Reprodutivo , Especificidade da Espécie , Cromossomo X
3.
J Transl Med ; 15(1): 204, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017562

RESUMO

BACKGROUND: Extracellular acidosis is a condition found within the tumor microenvironment due to inadequate blood perfusion, hypoxia, and altered tumor cell metabolism. Acidosis has pleiotropic effects on malignant progression; therefore it is essential to understand how acidosis exerts its diverse effects. TDAG8 is a proton-sensing G-protein-coupled receptor that can be activated by extracellular acidosis. METHODS: TDAG8 gene expression was analyzed by bioinformatic analyses and quantitative RT-PCR in human hematological malignancies. Retroviral transduction was used to restore TDAG8 expression in U937, Ramos and other blood cancer cells. Multiple in vitro and in vivo tumorigenesis and metastasis assays were employed to evaluate the effects of TDAG8 expression on blood cancer progression. Western blotting, immunohistochemistry and biochemical approaches were applied to elucidate the underlying mechanisms associated with the TDAG8 receptor pathway. RESULTS: TDAG8 expression is significantly reduced in human blood cancers in comparison to normal blood cells. Severe acidosis, pH 6.4, inhibited U937 cancer cell proliferation while mild acidosis, pH 6.9, stimulated its proliferation. However, restoring TDAG8 gene expression modulated the U937 cell response to mild extracellular acidosis and physiological pH by reducing cell proliferation. Tumor xenograft experiments further revealed that restoring TDAG8 expression in U937 and Ramos cancer cells reduced tumor growth. It was also shown U937 cells with restored TDAG8 expression attached less to Matrigel, migrated slower toward a chemoattractant, and metastasized less in severe combined immunodeficient mice. These effects correlated with a reduction in c-myc oncogene expression. The mechanistic investigation indicated that Gα13/Rho signaling arbitrated the TDAG8-mediated c-myc oncogene repression in response to acidosis. CONCLUSIONS: This study provides data to support the concept that TDAG8 functions as a contextual tumor suppressor down-regulated in hematological malignancies and potentiation of the TDAG8 receptor pathway may be explored as a potential anti-tumorigenic approach in blood cancers.


Assuntos
Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Receptores Acoplados a Proteínas G/genética , Proteínas Supressoras de Tumor/genética , Animais , Adesão Celular , Movimento Celular/genética , Proliferação de Células , Adesões Focais/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Camundongos SCID , Necrose , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Células U937 , Proteínas rho de Ligação ao GTP/metabolismo
4.
Data Brief ; 47: 108938, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36761407

RESUMO

MESH1 is the metazoan homolog of bacterial SpoT, the main phosphatase that dephosphorylates and degrades (p)ppGpp, the alarmone involved in the bacterial stringent response. The functional role of MESH1 in human cells is unknown. To define the global transcriptional response to MESH1 knockdown, we employed microarrays to perform transcriptome analysis of H1975 when the MESH1 was knocked down using three independent siRNAs targeting MESH1. The changes of each gene were derived by zero-transformation, followed by filtering to derive the genes affected by MESH1 knockdown. These datasets showed the transcriptional features of the mammalian stringent response and identified a prominent TAZ repression. Thus, we performed a second experiment to determine the contribution of TAZ repression to the transcriptional response of MESH1 knockdown by comparing the effects of MESH1-knockdown gene signatures in H1975 cells transduced with control or constitutive active TAZ (TAZS89A). The transcriptional response of these two cells to MESH1 was derived by zero transformation, followed by the effects of TAZ restoration to define the contribution of TAZ repression to the transcriptome features of human stringent response. The transcriptome data will be useful for the mechanistic understanding of the functional role of MESH1 in human cancer cells.

5.
Materials (Basel) ; 16(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444956

RESUMO

When using selective laser sintering to print parts with thin-walled structures, the thermal action of the laser can cause thermal stresses that lead to plastic deformation, resulting in large warpage and dimensional deviations. To address this issue, this study proposes a bottom support method for selective laser sintering. The impact of lattice-type, concentric-type, and cross-type support structures with varying filling densities and thicknesses on the suppression of warpage and dimensional errors was investigated. The optimal process parameters for each support structure were then determined through optimization. The findings of this study demonstrated a reduction in Z-axis dimensional errors of the workpiece following the addition of supports. The reduction amounted to 33.809%, 86.160%, and 66.214%, respectively, compared to the original workpiece. Moreover, the corresponding warpage was reduced by 35.673%, 46.189%, and 46.059% for each respective case, showcasing an improvement in the printing precision. Therefore, the bottom support effectively reduces dimensional and shape errors in thin-walled parts printed by selective laser sintering. Specifically, the results obtained indicated that the concentric type of support is more effective in reducing dimensional errors and enhancing the shape accuracy of the printed workpiece. Conversely, the cross type of support demonstrated superior capabilities in minimizing the consumption of printing materials while still delivering satisfactory results. Thus, this study holds promise for contributing to the advancement of thin-walled part quality using selective laser sintering technology. This research can contribute to achieving greater accuracy in the fabrication of parts through 3D printing.

6.
Cell Death Dis ; 13(3): 221, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273140

RESUMO

All organisms are constantly exposed to various stresses, necessitating adaptive strategies for survival. In bacteria, the main stress-coping mechanism is the stringent response triggered by the accumulation of "alarmone" (p)ppGpp to arrest proliferation and reprogram transcriptome. While mammalian genomes encode MESH1-the homolog of the (p)ppGpp hydrolase SpoT, current knowledge about its function remains limited. We found MESH1 expression tended to be higher in tumors and associated with poor patient outcomes. Consistently, MESH1 knockdown robustly inhibited proliferation, depleted dNTPs, reduced tumor sphere formation, and retarded xenograft growth. These antitumor phenotypes associated with MESH1 knockdown were accompanied by a significantly altered transcriptome, including the repressed expression of TAZ, a HIPPO coactivator, and proliferative gene. Importantly, TAZ restoration mitigated many anti-growth phenotypes of MESH1 knockdown, including proliferation arrest, reduced sphere formation, tumor growth inhibition, dNTP depletion, and transcriptional changes. Furthermore, TAZ repression was associated with the histone hypo-acetylation at TAZ regulatory loci due to the induction of epigenetic repressors HDAC5 and AHRR. Together, MESH1 knockdown in human cells altered the genome-wide transcriptional patterns and arrested proliferation that mimicked the bacterial stringent response through the epigenetic repression of TAZ expression.


Assuntos
Guanosina Pentafosfato , Fatores de Transcrição , Acetilação , Animais , Proliferação de Células/genética , Humanos , Mamíferos , Fatores de Transcrição/genética
7.
Genes Dis ; 8(3): 241-249, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997171

RESUMO

Ferroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis is gaining recognition, much remains unknown about various genetic and non-genetic determinants of ferroptosis. Hippo signaling pathway is an evolutionarily conserved pathway that responds to various environmental cues and controls organ size, cell proliferation, death, and self-renewal capacity. In cancer biology, Hippo pathway is a potent tumor suppressing mechanism and its dysregulation contributes to apoptosis evasion, cancer development, metastasis, and treatment resistance. Hippo dysregulation leads to aberrant activation of YAP and TAZ, the two major transcription co-activators of TEADs, that induce the expression of genes triggering tumor-promoting phenotypes, including enhanced cell proliferation, self-renewal and apoptosis inhibition. The Hippo pathway is regulated by the cell-cell contact and cellular density/confluence. Recently, ferroptosis has also been found being regulated by the cellular contact and density. The YAP/TAZ activation under low density, while confers apoptosis resistance, renders cancer cells sensitivity to ferroptosis. These findings establish YAP/TAZ and Hippo pathways as novel determinants of ferroptosis. Therefore, inducing ferroptosis may have therapeutic potential for YAP/TAZ-activated chemo-resistant and metastatic tumor cells. Reciprocally, various YAP/TAZ-targeting treatments under clinical development may confer ferroptosis resistance, limiting the therapeutic efficacy.

8.
Cell Death Dis ; 12(8): 727, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294679

RESUMO

All organisms exposed to metabolic and environmental stresses have developed various stress adaptive strategies to maintain homeostasis. The main bacterial stress survival mechanism is the stringent response triggered by the accumulation "alarmone" (p)ppGpp, whose level is regulated by RelA and SpoT. While metazoan genomes encode MESH1 (Metazoan SpoT Homolog 1) with ppGpp hydrolase activity, neither ppGpp nor the stringent response is found in metazoa. The deletion of Mesh1 in Drosophila triggers a transcriptional response reminiscent of the bacterial stringent response. However, the function of MESH1 remains unknown until our recent discovery of MESH1 as the first cytosolic NADPH phosphatase that regulates ferroptosis. To further understand whether MESH1 knockdown triggers a similar transcriptional response in mammalian cells, here, we employed RNA-Seq to analyze the transcriptome response to MESH1 knockdown in human cancer cells. We find that MESH1 knockdown induced different genes involving endoplasmic reticulum (ER) stress, especially ATF3, one of the ATF4-regulated genes in the integrative stress responses (ISR). Furthermore, MESH1 knockdown increased ATF4 protein, eIF2a phosphorylation, and induction of ATF3, XBPs, and CHOP mRNA. ATF4 induction contributes to ~30% of the transcriptome induced by MESH1 knockdown. Concurrent ATF4 knockdown re-sensitizes MESH1-depleted RCC4 cells to ferroptosis, suggesting its role in the ferroptosis protection mediated by MESH1 knockdown. ATF3 induction is abolished by the concurrent knockdown of NADK, implicating a role of NADPH accumulation in the integrative stress response. Collectively, these results suggest that MESH1 depletion triggers ER stress and ISR as a part of its overall transcriptome changes to enable stress survival of cancer cells. Therefore, the phenotypic similarity of stress tolerance caused by MESH1 removal and NADPH accumulation is in part achieved by ISR to regulate ferroptosis.


Assuntos
Ferroptose , Pirofosfatases/metabolismo , Estresse Fisiológico , Fator 4 Ativador da Transcrição/metabolismo , Brefeldina A/farmacologia , Ciclo Celular/genética , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Ferroptose/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Tunicamicina/farmacologia
9.
Cell Death Differ ; 27(7): 2234-2247, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31988496

RESUMO

The molecular and genetic basis of tumor recurrence is complex and poorly understood. RIPK3 is a key effector in programmed necrotic cell death and, therefore, its expression is frequently suppressed in primary tumors. In a transcriptome profiling between primary and recurrent breast tumor cells from a murine model of breast cancer recurrence, we found that RIPK3, while absent in primary tumor cells, is dramatically reexpressed in recurrent breast tumor cells by an epigenetic mechanism. Unexpectedly, we found that RIPK3 knockdown in recurrent tumor cells reduced clonogenic growth, causing cytokinesis failure, p53 stabilization, and repressed the activities of YAP/TAZ. These data uncover a surprising role of the pro-necroptotic RIPK3 kinase in enabling productive cell cycle during tumor recurrence. Remarkably, high RIPK3 expression also rendered recurrent tumor cells exquisitely dependent on extracellular cystine and undergo necroptosis upon cystine deprivation. The induction of RIPK3 in recurrent tumors unravels an unexpected mechanism that paradoxically confers on tumors both growth advantage and necrotic vulnerability, providing potential strategies to eradicate recurrent tumors.


Assuntos
Cistina/metabolismo , Neoplasias Mamárias Animais/patologia , Recidiva Local de Neoplasia/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Regulação para Cima/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Mamárias Animais/genética , Mitose/efeitos dos fármacos , Recidiva Local de Neoplasia/genética , Piperazinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP
10.
Nat Metab ; 2(3): 270-277, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32462112

RESUMO

Critical to the bacterial stringent response is the rapid relocation of resources from proliferation toward stress survival through the respective accumulation and degradation of (p)ppGpp by RelA and SpoT homologues. While mammalian genomes encode MESH1, a homologue of the bacterial (p)ppGpp hydrolase SpoT, neither (p)ppGpp nor its synthetase has been identified in mammalian cells. Here, we show that human MESH1 is an efficient cytosolic NADPH phosphatase that facilitates ferroptosis. Visualization of the MESH1-NADPH crystal structure revealed a bona fide affinity for the NADPH substrate. Ferroptosis-inducing erastin or cystine deprivation elevates MESH1, whose overexpression depletes NADPH and sensitizes cells to ferroptosis, whereas MESH1 depletion promotes ferroptosis survival by sustaining the levels of NADPH and GSH and by reducing lipid peroxidation. The ferroptotic protection by MESH1 depletion is ablated by suppression of the cytosolic NAD(H) kinase, NADK, but not its mitochondrial counterpart NADK2. Collectively, these data shed light on the importance of cytosolic NADPH levels and their regulation under ferroptosis-inducing conditions in mammalian cells.


Assuntos
Citosol/enzimologia , Ferroptose/fisiologia , NADP/metabolismo , Pirofosfatases/metabolismo , Humanos
11.
Cell Rep ; 28(10): 2501-2508.e4, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484063

RESUMO

Despite recent advances, the poor outcomes in renal cell carcinoma (RCC) suggest novel therapeutics are needed. Ferroptosis is a form of regulated cell death, which may have therapeutic potential toward RCC; however, much remains unknown about the determinants of ferroptosis susceptibility. We found that ferroptosis susceptibility is highly influenced by cell density and confluency. Because cell density regulates the Hippo-YAP/TAZ pathway, we investigated the roles of the Hippo pathway effectors in ferroptosis. TAZ is abundantly expressed in RCC and undergoes density-dependent nuclear or cytosolic translocation. TAZ removal confers ferroptosis resistance, whereas overexpression of TAZS89A sensitizes cells to ferroptosis. Furthermore, TAZ regulates the expression of Epithelial Membrane Protein 1 (EMP1), which, in turn, induces the expression of nicotinamide adenine dinucleotide phosphate (NADPH) Oxidase 4 (NOX4), a renal-enriched reactive oxygen species (ROS)-generating enzyme essential for ferroptosis. These findings reveal that cell density-regulated ferroptosis is mediated by TAZ through the regulation of EMP1-NOX4, suggesting its therapeutic potential for RCC and other TAZ-activated tumors.


Assuntos
Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ferroptose , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Contagem de Células , Linhagem Celular Tumoral , Ferroptose/efeitos dos fármacos , Células HEK293 , Via de Sinalização Hippo , Humanos , Camundongos , NADPH Oxidase 4/metabolismo , Proteínas de Neoplasias/genética , Piperazinas/farmacologia , Receptores de Superfície Celular/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA