Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 257(4): 74, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879182

RESUMO

MAIN CONCLUSION: The alpine meadow plants showed great intra- and inter-genera variations of chemical profiles of cuticular waxes. Developing an understanding of wax structure-function relationships that will help us tackle global climate change requires a detailed understanding of plant wax chemistry. The goal in this study was to provide a catalog of wax structures, abundances, and compositions on alpine meadow plants. Here, leaf waxes from 33 plant species belonging to 11 families were sampled from alpine meadows of the east side of the Qinghai-Tibet Plateau. Across these species, total wax coverage varied from 2.30 µg cm-2 to 40.70 µg cm-2, showing variation both within as well as between genera and suggesting that wax variation is subject to both environmental and genetic effects. Across all wax samples, more than 140 wax compounds belonging to 13 wax compound classes were identified, including both ubiquitous wax compounds and lineage-specific compounds. Among the ubiquitous compounds (primary alcohols, alkyl esters, aldehydes, alkanes, and fatty acids), chain length profiles across a wide range of species point to key differences in the chain length specificity of alcohol and alkane formation machinery. The lineage-specific wax compound classes (diols, secondary alcohols, lactones, iso-alkanes, alkyl resorcinols, phenylethyl esters, cinnamate esters, alkyl benzoates, and triterpenoids) nearly all consisted of isomers with varying chain lengths or functional group positions, making the diversity of specialized wax compounds immense. The comparison of species relationships between chemical data and genetic data highlighted the importance of inferring phylogenetic relationships from data sets that contain a large number of variables that do not respond to environmental stimuli.


Assuntos
Aldeídos , Pradaria , Filogenia , Tibet , Alcanos , Ésteres
2.
Front Microbiol ; 14: 1128057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891380

RESUMO

Introduction: Cyanogenic glycosides (CNglcs) are bioactive plant products involving in plant defense against herbivores by virtue of their abilities to release toxic hydrogen cyanide (HCN). Aspergillus niger has been shown to be effective in producing ß-glucosidase, which could degrade CNglcs. However, whether A. niger could remove CNglcs under ensiling conditions is still unknown. Methods: In this study, we first investigated the HCN contents in ratooning sorghums for two years, then the sorghums were ensiled with or without the addition of A. niger. Results: Two years' investigation indicated that the contents of HCN in fresh ratooning sorghum were larger than 801 mg/kg FW (fresh weight), which could not be reduced by silage fermentation under safety threshold (200 mg/kg FW). A. niger could produce ß-glucosidase over a range of pH and temperature, which degraded the CNglcs and removed the hydrogen cyanide (HCN) at early days of ratooning sorghum fermentation. The addition of A. niger (2.56 × 107 CFU/ml) altered the microbial community, increased bacterial diversity, improved the nutritive qualities, and reduced the HCN contents in ensiled ratooning sorghum lower than 100 mg/kg FW after 60 days of fermentation. Overall, the addition of 150 ml A. niger + 50 ml sterile water per 3 kg silage could efficiently remove CNglcs from ratooning sorghum silage. Conclusion: In conclusion, A. niger could produce ß-glucosidase which degraded the CNglcs during the early days of fermentation, benefiting the ensiling process and improving the utilization of ratooning sorghum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA