Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 31780-31795, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37858995

RESUMO

We studied Extreme Ultra-Violet (EUV) emission characteristics of the 13.5 nm wavelength from CO2 laser-irradiated pre-formed tin plasmas using 2D radiation hydrodynamic simulations. Our results indicate that when a CO2 laser irradiates pre-formed tin plasma, the heated plasma expands towards the surrounding plasma, steepening the density at the ablation front and lowering the density near the laser axis due to the transverse motion of the plasma. Consequently, the laser absorption fraction decreases, and the contribution to EUV output from the ablation front becomes dominant over that from the low-density plasmas. We estimated that an EUV conversion efficiency of 10% from laser to EUV emission could be achieved with a larger laser spot size, shortened laser pulse width, and longer pre-formed plasma density scale length. Our results offer one optimizing solution to achieve an efficient and powerful EUV light source for the next-generation semiconductors.

2.
Opt Express ; 30(24): 43491-43502, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523045

RESUMO

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.

3.
Phys Rev Lett ; 124(3): 035001, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031862

RESUMO

Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.

4.
Opt Lett ; 44(6): 1439-1442, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874670

RESUMO

To generate bright water-window (WW) soft x rays (2.3-4.4 nm), gold slab targets were irradiated with laser pulses (1064 nm, 7 ns, 1 J). Emission spectroscopy showed that the introduction of low-pressure nitrogen enhanced the soft x-ray yield emitted from the laser-produced Au plasma. The intensity of the WW x-ray transported in a 400-Pa N2 atmosphere from the laser-produced plasma increased by 3.8 times over that in vacuum. Considering a strong x-ray absorption, the x-ray yield emitted directly from the Au plasma in the N2 gas was evaluated to be 13 times higher than that in vacuum. Although similar measurements were made for various gases, only N2 gas causes an increase in a soft x-ray yield. The processes leading to this enhancement mechanism were revealed by using hydrodynamic simulation and atomic structure codes.

5.
Opt Express ; 26(21): 27748-27756, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469835

RESUMO

We demonstrate intense emission in the water-window soft x-ray spectral region by controlling the spectral behavior through changing the balance between emissivity and self-absorption in an expanding plasma. The number of photons obtained from a dual laser irradiated target with a 150-ps pre-pulse was maximized at 3.8 × 1014 photons/sr in λ = 2.34 - 4.38 nm at a pulse separation time of 7 - 10 ns. Enhancement of the number of photons is attributed to efficient coupling with the main laser pulse while maintaining a tiny source size.

6.
Opt Lett ; 43(15): 3750-3753, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067671

RESUMO

The effect of optical thickness in a bismuth water-window soft x-ray source is considered by comparing the emission from laser-produced plasmas of a 7.5% atomic density foam target and a solid-density target. The number of photons recorded in the 4 nm region was comparable for both targets at a plasma-initiating laser pulse duration of 6 ns. From experiments at different pulse durations of 150 ps and 6 ns, self-absorption (opacity) effects were found to be relatively small for bismuth plasmas as compared to those of tin, based on the same emission mechanism and which are used in 13.5 nm sources for extreme ultraviolet lithography.

7.
Sci Rep ; 13(1): 1825, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726029

RESUMO

Plasma dynamics are governed by electron density (ne), electron temperature (Te), and radiative energy transfer as well as by macroscopic flows. However, plasma flow-velocity fields (vflow) inside laser-produced plasmas (LPPs) have rarely been measured, owing to their small sizes (< 1 mm) and short lifetimes (< 100 ns). Herein, we report, for the first time, two-dimensional (2D) vflow measurements of Sn-LPPs ("double-pulse" scheme with a CO2 laser) for extreme-ultraviolet (EUV) light sources for semiconductor lithography using the collective Thomson scattering technique, which is typically used to measure ne, Te, and averaged ionic charge (Z) of plasmas. Inside the EUV source, we observed plasma inflow speed exceeding 104 m/s magnitudes toward a plasma central axis from its peripheral regions. The time-resolved 2D profiles of ne, Te, Z, and vflow indicate that the plasma inflows maintain the EUV source at a temperature suitable (25 eV < Te < 40 eV) for EUV light emission at a high density (ne > 3 × 1024 m-3) and for a relatively long time (> 10 ns), resulting increment of total EUV light emission. These results indicate that controlling the plasma flow can improve EUV light output and that there is potential to increase the EUV output further.

8.
J Phys Condens Matter ; 35(32)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37137311

RESUMO

The optical properties of pure liquid copper were investigated using density functional theory with the Quantum ESPRESSO package. The effects of structural changes were investigated by comparing the electron density of states and imaginary part of the dielectric function between the crystalline and liquid states with densities near the melting point. The results indicated that the effect of interband transitions remains in the structural changes near the melting point.

9.
Phys Rev E ; 107(6-2): 065211, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464616

RESUMO

Optimal laser irradiation conditions for water-window (WW) x-ray emission (2.3-4.4 nm) from an Au plasma are investigated to develop a laboratory-scale WW x-ray source. A minimum Au target thickness of 1 µm is obtained for a laser intensity of ∼10^{13} W/cm^{2} by observing the intensity drop in the WW spectra. Au targets produced by thermal evaporation are found to have a higher conversion efficiency than commercial foil targets for WW x-ray radiation. In addition, optimal laser spots for fixed laser energies (240 and 650 mJ) are found for an Au target ∼1 mm in front of the focal point, where suitable conditions for plasma temperature and plume volume coupling are achieved. The mechanism of the optimal target thickness and spot size can be well explained using a radiation hydrodynamic simulation code.

10.
Rev Sci Instrum ; 91(8): 086103, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872925

RESUMO

We investigated the charge-separated spectra of highly charged suprathermal bismuth (Bi) ions from a dual laser-produced plasma soft x-ray source developed for soft x-ray microscopy. The charge distribution of these suprathermal ions emitted from a solid planar Bi target was measured by an electrostatic energy analyzer. The maximum ionic charge state was observed to be Z = 17 and to possess a maximum energy of about 200 keV. This evaluation provides important information essential for the development of debris mitigation schemes in a soft x-ray microscope.

11.
Sci Rep ; 10(1): 20512, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262358

RESUMO

We demonstrate a radiation hydrodynamic simulation of optical vortex pulse-ablated microcone structures on silicon (Si) substrates. Doughnut-shaped craters were formed by single pulse irradiation on the Si substrate, and a twisted cone structure with a height of 3.5 µm was created at the center of the irradiation spot by the circularly polarized optical vortex pulse. A two-dimensional (2-D) radiation hydrodynamic simulation reproduced the cone structure well with a height of 3 µm. The central part of the incident laser power was lowered from the initial profile due to plasma shielding over the laser pulse duration for an inverted double-well laser profile. The acute tip shape of the silicon surface can survive over the laser irradiation period.

12.
Nat Commun ; 9(1): 3937, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258053

RESUMO

Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in inertial confinement fusion (ICF) ignition sparks. Laser-produced relativistic electron beam (REB) deposits a part of kinetic energy in the core, and then the heated region becomes the hot spark to trigger the ignition. However, due to the inherent large angular spread of the produced REB, only a small portion of the REB collides with the core. Here, we demonstrate a factor-of-two enhancement of laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a magnetic field of hundreds of Tesla that is applied to the transport region from the REB generation zone to the core which results in guiding the REB along the magnetic field lines to the core. This scheme may provide more efficient energy coupling compared to the conventional ICF scheme.

13.
Sci Rep ; 7(1): 8910, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827638

RESUMO

We report an experimental demonstration of controlling plasma flow direction with a magnetic nozzle consisting of multiple coils. Four coils are controlled separately to form an asymmetric magnetic field to change the direction of laser-produced plasma flow. The ablation plasma deforms the topology of the external magnetic field, forming a magnetic cavity inside and compressing the field outside. The compressed magnetic field pushes the plasma via the Lorentz force on a diamagnetic current: j × B in a certain direction, depending on the magnetic field configuration. Plasma and magnetic field structure formations depending on the initial magnetic field were simultaneously measured with a self-emission gated optical imager and B-dot probe, respectively, and the probe measurement clearly shows the difference of plasma expansion direction between symmetric and asymmetric initial magnetic fields. The combination of two-dimensional radiation hydrodynamic and three-dimensional hybrid simulations shows the control of the deflection angle with different number of coils, forming a plasma structure similar to that observed in the experiment.

14.
Sci Rep ; 7(1): 12328, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970565

RESUMO

Time-resolved two-dimensional (2D) profiles of electron density (n e) and electron temperature (T e) of extreme ultraviolet (EUV) lithography light source plasmas were obtained from the ion components of collective Thomson scattering (CTS) spectra. The highest EUV conversion efficiency (CE) of 4% from double pulse lasers irradiating a Sn droplet was obtained by changing their delay time. The 2D-CTS results clarified that for the highest CE condition, a hollow-like density profile was formed, i.e., the high density region existed not on the central axis but in a part with a certain radius. The 2D profile of the in-band EUV emissivity (ηEUV) was theoretically calculated using the CTS results and atomic model (Hullac code), which reproduced a directly measured EUV image reasonably well. The CTS results strongly indicated the necessity of optimizing 2D plasma profiles to improve the CE in the future.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016403, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15697731

RESUMO

A uniformly imploded deuterated polystyrene (CD) shell target is fast-heated by a Petawatt (PW) laser without cone guide. The best illumination timing is found to be in a narrow region around 80+/-20 picoseconds from the onset of the stagnation phase, where thermal neutrons are enhanced four to five times by the PW laser of energy less than 10% of the implosion laser. The timing agrees with the timings of enhancement of the x-ray emission from the core and reduction of the bremsstrahlung radiation from scattered hot electrons. The PW laser, focused to the critical density point, generates the energetic electrons within as narrow an angle as 30 degrees , which then heats the imploded CD shell to enhance thermal neutrons. These results first demonstrate that the PW laser directly heats the imploded core without any conelike laser guide.

16.
Artigo em Inglês | MEDLINE | ID: mdl-26172803

RESUMO

A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

17.
Rev Sci Instrum ; 85(11): 116104, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430153

RESUMO

We report on production of volume-limited dot targets based on electron beam lithographic and sputtering technologies for use in efficient high brightness extreme ultraviolet microplasma sources. We successfully produced cylindrical tin (Sn) targets with diameters of 10, 15, and 20 µm and a height of 150 nm. The calculated spectrum around 13.5 nm was in good agreement with that obtained experimentally.

18.
Sci Rep ; 3: 1170, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23378905

RESUMO

Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 µm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 µm, and 5 × 10(16) W/cm(2)).

19.
Sci Rep ; 3: 2561, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24008696

RESUMO

Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 10(18) W/cm(2), respectively. The irradiated pellets produce D(d,n)(3)He-reacted neutrons with a maximum yield of 9.5 × 10(4)/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 µm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy.


Assuntos
Lasers , Nêutrons , Fusão Nuclear , Poliestirenos/efeitos da radiação
20.
Phys Rev Lett ; 102(24): 245001, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19659015

RESUMO

Particle-in-cell simulations aimed at improving the coupling efficiency of input laser energy deposited to a compressed core by using a double cone are described. It is found that the number of high-energy electrons escaping from the sides of the cone is greatly reduced by the vacuum gap inside the wing of the double cone. Two main mechanisms to confine high-energy electrons are found. These mechanisms are the sheath electric field at the rear of the inner cone wing and the quasistatic magnetic field inside the vacuum gap. The generation mechanism for the quasistatic magnetic fields is discussed in detail. It is found that the quasistatic fields continue to confine the high-energy electrons for longer than a few picoseconds. The double cones provide confinement and focusing of about 15% of the input energy for deposition in the compressed core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA