Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicology ; 27(7): 809-818, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29802487

RESUMO

Arbuscular mycorrhizal fungi (AMF) are mutualistic symbionts considered a key group in soil systems involved in the provision of several ecosystem services. Recently they have been listed by EFSA as organisms to be included in the test battery for the risk assessment of plant protection product (PPPs). This study aimed to contribute to improve the ISO Protocol (ISO 10832: 2009) by assessing the feasibility of using other AMF species under different test conditions. Overall, results showed that AMF species Gigaspora albida and Rhizophagus clarus (selected out of five AMF species) are suitable to be used in spore germination tests using the ISO protocol (14 days incubation with sand or artificial soil as substrate) to test PPPs. However, several modifications to the protocol were made in order to accommodate the use of the tested isolates, namely the incubation temperature (28 °C instead of 24 °C) and the change of reference substance (boric acid instead of cadmium nitrate). The need for these changes, plus the results obtained with the three fungicides tested (chlorothalonil, mancozeb and metalaxyl-M) and comparisons made with literature on the relevance of the origin of AMF isolates in dictating the adequate test conditions, emphasize the importance of adjusting test conditions (AMF species/isolates and test temperature) when assessing effects for prospective risk assessment targeting different climatic zones. So, further studies should be conducted with different AMF species and isolates from different climatic regions, in order to better define which species/isolate and test conditions should be used to assess effects of a particular PPP targeting a given climatic zone.


Assuntos
Fungicidas Industriais/toxicidade , Glomeromycota/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Microbiologia do Solo , Testes de Toxicidade/métodos , Alanina/análogos & derivados , Alanina/toxicidade , Maneb/toxicidade , Nitrilas/toxicidade , Medição de Risco , Solo/química , Temperatura , Fatores de Tempo , Zineb/toxicidade
2.
Microb Ecol ; 74(4): 901-909, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28600590

RESUMO

Bacillus thuringiensis subsp. israelensis (Bti) is a soil-borne bacterium affiliated to the Bacillus cereus group (Bcg) and has been used in biocontrol products against nematoceran larvae for several decades. However, knowledge is limited on whether long-term Bti application can affect the structure of indigenous communities of Bcg and the overall abundance of Bti. Using species- and group-specific quantitative PCR assays, we measured the Bcg- and Bti-abundances in riparian wetlands in the River Dalälven floodplains of central Sweden. On five occasions during one vegetative season, soil samples were collected in alder swamps and wet meadows which had been treated with Bti for mosquito larvae control during the preceding 11 years, as well as in untreated control sites and well-drained forests in the same area. The average abundance of Bcg in alder swamps was around three times higher than in wet meadows. Across all sites and habitats, the Bti treatments had no effect on the Bcg-abundance, whereas the Bti-abundance was significantly higher in the treated than in the control sites. However, for individual sampling sites, abundances of Bti and Bcg were not correlated with the number of Bti applications, indicating that added Bti possibly influenced the total population of Bti in the short term but had only a limited effect in the longer term. The findings of this study increase the understanding of the ecology of Bti applications for mosquito control, which can facilitate environmental risk assessment in connection with approval of microbiological control agents.


Assuntos
Bacillus cereus/fisiologia , Bacillus thuringiensis/fisiologia , Controle de Mosquitos , Controle Biológico de Vetores , Microbiologia do Solo , Animais , Culicidae/crescimento & desenvolvimento , Larva , Estações do Ano , Suécia , Áreas Alagadas
3.
Appl Environ Microbiol ; 81(15): 4894-903, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979887

RESUMO

Bacillus thuringiensis serovar israelensis is a wide-spread soil bacterium affiliated with the B. cereus group (Bcg) and is widely used in biocontrol products applied against mosquito and black fly larvae. For monitoring and quantification of applied B. thuringiensis serovar israelensis and its effect on indigenous B. thuringiensis serovar israelensis and Bcg assemblages, efficient and reliable tools are essential. The abundance and properties of B. thuringiensis serovar israelensis strains in the environment traditionally have been investigated with cultivation-dependent techniques, which are hampered by low sensitivity and the morphological similarity between B. cereus and B. thuringiensis. Currently available PCR-based detection and quantification tools target markers located on plasmids. In this study, a new cultivation-independent PCR-based method for efficient and specific quantification of B. thuringiensis serovar israelensis and Bcg is presented, utilizing two sets of PCR primers targeting the bacterial chromosome. Sequence database searches and empirical tests performed on target and nontarget species, as well as on bulk soil DNA samples, demonstrated that this diagnostic tool is specific for B. thuringiensis serovar israelensis and Bcg. The method will be useful for comparisons of Bcg and B. thuringiensis serovar israelensis abundances in the same samples. Moreover, the effect of B. thuringiensis serovar israelensis-based insecticide application on the total Bcg assemblages, including indigenous populations, can be investigated. This type of information is valuable in risk assessment and policy making for use of B. thuringiensis serovar israelensis in the environment.


Assuntos
Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Bacillus thuringiensis/genética , Bacillus thuringiensis/isolamento & purificação , Carga Bacteriana/métodos , Microbiologia Ambiental , Reação em Cadeia da Polimerase/métodos , Cromossomos Bacterianos , Sensibilidade e Especificidade
4.
Ecology ; 95(6): 1506-19, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039216

RESUMO

Dystrophic lakes are widespread in temperate regions and intimately interact with surrounding terrestrial ecosystems in energy and nutrient dynamics, yet the relative importance of autochthonous and allochthonous resources to consumer production in dystrophic lakes remains controversial. We argue that allochthonous organic matter quantitatively dominates over photosynthetic autotrophs in dystrophic lakes, but that autotrophs are higher in diet quality and more important for consumers as they contain essential polyunsaturated fatty acids (PUFA). In a field study, we tested the hypotheses that (1) autochthonous primary production is the main driver for consumer production, despite being limited by light availability and low nutrient supplies, and greater supply of allochthonous carbon, (2) the relative contribution of autotrophs to consumers is directly related to their tissue PUFA concentrations, and (3) methane-oxidizing bacteria (MOB) provide an energy alternative for consumers. Pelagic and benthic consumer taxa representing different trophic levels were sampled from five dystrophic lakes: isopod Asellus aquaticus, megalopteran Sialis lutaria, dipteran Chaoborus flavicans, and perch Perca fluviatilis. Based on carbon and nitrogen stable isotopes, the relative contributions of autochthonous (biofilms and seston) and allochthonous (coarse particulate and dissolved organic matter) resources and MOB to these taxa were 47-79%, 9-44% and 7-12% respectively. Results from fatty acid (FA) analyses show that the relative omega3-FA and PUFA concentrations increased with trophic level (Asellus < Sialis and Chaoborus < Perca). Also, eicosapentaenoic-acid (EPA), omega3-FA and PUFA concentrations increased with the autochthonous contribution in consumers, i.e., a 47-79% biofilm and/or seston diet resulted in tissue EPA of 4.2-18.4, omega3 FAs of 11.6-37.0 and PUFA of 21.6-61.0 mg/g dry mass. The results indicate that consumers in dystrophic lakes predominantly rely on energy from autotrophs and that their PUFA concentrations are dependent on the relative contribution of these autochthonous resources. The limited energy support from MOB suggests they are not negligible and are potentially an integral part of the food webs. Our findings show that autochthonous resources are the main driver of secondary production even in dystrophic lakes and offer new insights into the functioning of these ecosystems.


Assuntos
Ecossistema , Comportamento Alimentar , Invertebrados/fisiologia , Lagos , Percas/fisiologia , Animais , Análise de Componente Principal
5.
EFSA J ; 22(7): e8882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040570

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms. A new procedure has been established to ensure the TUs are kept up to date in relation to recent taxonomical insights. Of 83 microorganisms notified to EFSA between October 2023 and March 2024 (47 as feed additives, 25 as food enzymes or additives, 11 as novel foods), 75 were not evaluated because: 15 were filamentous fungi, 1 was Enterococcus faecium, 10 were Escherichia coli, 1 was a Streptomyces (all excluded from the QPS evaluation) and 48 were TUs that already have a QPS status. Two of the other eight notifications were already evaluated for a possible QPS status in the previous Panel Statement: Heyndrickxia faecalis (previously Weizmannia faecalis) and Serratia marcescens. One was notified at genus level so could not be assessed for QPS status. The other five notifications belonging to five TUs were assessed for possible QPS status. Akkermansia muciniphila and Actinomadura roseirufa were still not recommended for QPS status due to safety concerns. Rhizobium radiobacter can be recommended for QPS status with the qualification for production purposes. Microbacterium arborescens and Burkholderia stagnalis cannot be included in the QPS list due to a lack of body of knowledge for its use in the food and feed chain and for B. stagnalis also due to safety concerns. A. roseirufa and B. stagnalis have been excluded from further QPS assessment.

6.
EFSA J ; 22(1): e8517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213415

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.

7.
Trends Plant Sci ; 28(5): 498-500, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934039

RESUMO

Biological control has developed into a realistic alternative to replace chemical pesticides. A long-awaited paradigm shift is now adopted by the European Commission through a proposed new Regulation on sustainable use of plant protection products. Unfortunately, the scientific framework underpinning biocontrol is seriously neglected, impeding transition to sustainable plant production.


Assuntos
Surdez , Praguicidas , Controle Biológico de Vetores
8.
EFSA J ; 21(7): e08092, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37434788

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 38 microorganisms notified to EFSA between October 2022 and March 2023 (inclusive) (28 as feed additives, 5 as food enzymes, food additives and flavourings, 5 as novel foods), 34 were not evaluated because: 8 were filamentous fungi, 4 were Enterococcus faecium and 2 were Escherichia coli (taxonomic units that are excluded from the QPS evaluation) and 20 were taxonomic units (TUs) that already have a QPS status. Three of the other four TUs notified within this period were evaluated for the first time for a possible QPS status: Anaerobutyricum soehngenii, Stutzerimonas stutzeri (former Pseudomonas stutzeri) and Nannochloropsis oculata. Microorganism strain DSM 11798 has also been notified in 2015 and as its taxonomic unit is notified as a strain not a species, it is not suitable for the QPS approach. A. soehngenii and N. oculata are not recommended for the QPS status due to a limited body of knowledge of its use in the food and feed chains. S. stutzeri is not recommended for inclusion in the QPS list based on safety concerns and limited information about the exposure of animals and humans through the food and feed chains.

9.
EFSA J ; 21(1): e07746, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704192

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, new information was found leading to the withdrawal of the qualification 'absence of aminoglycoside production ability' for Bacillus velezensis. The qualification for Bacillus paralicheniformis was changed to 'absence of bacitracin production ability'. For the other TUs, no new information was found that would change the status of previously recommended QPS TUs. Of 52 microorganisms notified to EFSA between April and September 2022 (inclusive), 48 were not evaluated because: 7 were filamentous fungi, 3 were Enterococcus faecium, 2 were Escherichia coli, 1 was Streptomyces spp., and 35 were taxonomic units (TUs) that already have a QPS status. The other four TUs notified within this period, and one notified previously as a different species, which was recently reclassified, were evaluated for the first time for a possible QPS status: Xanthobacter spp. could not be assessed because it was not identified to the species level; Geobacillus thermodenitrificans is recommended for QPS status with the qualification 'absence of toxigenic activity'. Streptoccus oralis is not recommended for QPS status. Ogataea polymorpha is proposed for QPS status with the qualification 'for production purposes only'. Lactiplantibacillus argentoratensis (new species) is included in the QPS list.

10.
Microb Ecol ; 63(3): 701-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22052370

RESUMO

The short-term response of induced perturbation by 4-ethylphenol on ß-proteobacterial ammonia oxidizers (ß-AOB) was investigated in two soils with initial differences in community structure. The hypotheses were that short-term effects of a disturbance of the AOB community is best monitored by specifically looking at the active populations and that soils with dissimilar active AOB populations would display different degree of resistance or resilience. Two soils from a previously characterized long-term field study fertilized with manure or sewage sludge was used. Soil microcosms were incubated in the laboratory over 15 days. The substrate-induced ammonia oxidation was measured, and the composition of ß-AOB communities was determined by PCR-DGGE of specific ß-AOB 16S rRNA gene fragments. Actively replicating members of the ß-AOB were distinguished by the use of bromodeoxyuridine (BrdU) immunocapture. This approach demonstrated that only a minor fraction of the total AOB community was active. Exposure to 4-ethylphenol resulted in approximately 90% lowered substrate-induced ammonia oxidation rates in both soils. This activity inhibition was not accompanied by shifts in ß-AOB community structure when total ß-AOB DNA was studied. By contrast, changes were seen in the DGGE banding pattern of the BrdU-labeled community DNA after 4-ethylphenol addition in the manure-fertilized soil. In the sewage sludge fertilized soil, the banding pattern of the BrdU-labeled ß-AOB remained unchanged, but bands were weaker after the disturbance. In conclusion, it was shown that BrdU immunocapture was applicable to detect shifts in community composition among replicating ß-AOB populations in soil. However, this was not reflected by the soils' ammonia oxidation capacity to resist to or recover from the induced perturbation suggesting that rapid population shifts may not influence soil functioning in a short-term perspective.


Assuntos
Amônia/metabolismo , Betaproteobacteria/metabolismo , Microbiologia do Solo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Dados de Sequência Molecular , Oxirredução , Filogenia
11.
EFSA J ; 20(7): e07408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898292

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 50 microorganisms notified to EFSA in October 2021 to March 2022 (inclusive), 41 were not evaluated: 10 filamentous fungi, 1 Enterococcus faecium, 1 Clostridium butyricum, 3 Escherichia coli and 1 Streptomyces spp. because are excluded from QPS evaluation, and 25 TUs that have already a QPS status. Nine notifications, corresponding to seven TUs were evaluated: four of these, Streptococcus salivarius, Companilactobacillus formosensis, Pseudonocardia autotrophica and Papiliotrema terrestris, being evaluated for the first time. The other three, Microbacterium foliorum, Pseudomonas fluorescens and Ensifer adhaerens were re-assessed. None of these TUs were recommended for QPS status: Ensifer adhaerens, Microbacterium foliorum, Companilactobacillus formosensis and Papiliotrema terrestris due to a limited body of knowledge, Streptococcus salivarius due to its ability to cause bacteraemia and systemic infection that results in a variety of morbidities, Pseudonocardia autotrophica due to lack of body of knowledge and uncertainty on the safety of biologically active compounds which can be produced, and Pseudomonas fluorescens due to possible safety concerns.

12.
EFSA J ; 20(1): e07045, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126735

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. The QPS list was updated in relation to the revised taxonomy of the genus Bacillus, to synonyms of yeast species and for the qualifications 'absence of resistance to antimycotics' and 'only for production purposes'. Lactobacillus cellobiosus has been reclassified as Limosilactobacillus fermentum. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TU)s. Of the 70 microorganisms notified to EFSA, 64 were not evaluated: 11 filamentous fungi, one oomycete, one Clostridium butyricum, one Enterococcus faecium, five Escherichia coli, one Streptomyces sp., one Bacillus nakamurai and 43 TUs that already had a QPS status. Six notifications, corresponding to six TUs were evaluated: Paenibacillus lentus was reassessed because an update was requested for the current mandate. Enterococcus lactis synonym Enterococcus xinjiangensis, Aurantiochytrium mangrovei synonym Schizochytrium mangrovei, Schizochytrium aggregatum, Chlamydomonas reinhardtii synonym Chlamydomonas smithii and Haematococcus lacustris synonym Haematococcus pluvialis were assessed for the first time. The following TUs were not recommended for QPS status: P. lentus due to a limited body of knowledge, E. lactis synonym E. xinjiangensis due to potential safety concerns, A. mangrovei synonym S. mangrovei, S. aggregatum and C. reinhardtii synonym C. smithii, due to lack of a body of knowledge on its occurrence in the food and feed chain. H. lacustris synonym H. pluvialis is recommended for QPS status with the qualification 'for production purposes only'.

13.
Antonie Van Leeuwenhoek ; 99(1): 113-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21086043

RESUMO

Yeasts have been important components of spontaneous fermentations in food and beverage processing for millennia. More recently, the potential of utilising antagonistic yeasts, e.g. Pichia anomala and Candida spp., for post-harvest biological control of spoilage fungi during storage of plant-derived produce ('biopreservation') has been clearly demonstrated. Although some yeast species are among the safest microorganisms known, several have been reported in opportunistic infections in humans, including P. anomala and bakers' yeast, Saccharomyces cerevisiae. More research is needed about the dominant pathogenicity and virulence factors in opportunistic yeasts, and whether increased utilisation of biopreservative yeasts in general could contribute to an increased prevalence of yeast infections. The regulatory situation for yeasts used in post-harvest biocontrol is complex and the few products that have reached the market are mainly registered as biological pesticides. The qualified presumption of safety (QPS) approach to safety assessments of microorganisms intentionally added to food or feed, recently launched by the European Food Safety Authority, can lead to more efficient evaluations of new products containing microbial species with a sufficient body of knowledge or long-term experience on their safety. P. anomala is one of several yeast species that have been given QPS status, although the status is restricted to use of this yeast for enzyme and metabolite production purposes. With regard to authorisation of new biopreservative yeasts, we recommend that the possibility to regulate microorganisms for food biopreservation as food additives be considered.


Assuntos
Candida/fisiologia , Microbiologia de Alimentos/normas , Conservação de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Controle Biológico de Vetores/métodos , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Candida/patogenicidade , Conservação de Alimentos/normas , Controle Biológico de Vetores/normas , Pichia/patogenicidade , Saccharomyces cerevisiae/patogenicidade
14.
Pest Manag Sci ; 77(5): 2170-2178, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33201551

RESUMO

The aim of this study was to identify reasons why the authorization of microbial pest control agents is lengthier under regulatory frameworks of the European Union (EU) than in comparable jurisdictions. A main conclusion is that although the EU's regulatory processes have strong scientific foundations, the most appropriate scientific concepts, knowledge and expertise have not been applied in the safety assessment of microorganisms and biological control. Tradition and conceptual legacies from assessments of conventional chemical pesticides have likely contributed to this by steering the evaluations of microorganisms in less appropriate directions. According to our investigation, the current framework for microbial plant protection products complies poorly with the principles that legislation should have legal predictability, proportionality, and that it should be non-discriminative, for instance in comparison to corresponding regulations in comparable jurisdictions. We also found that existing possibilities to take non-safety and ethical considerations into account can probably be used more. To rationalize the EU's authorization of microbial control products, both the basic legislation and the evaluations of agents and products need stronger rooting in fundamental microbiological science. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Agentes de Controle Biológico , Praguicidas , União Europeia , Controle de Pragas
15.
Microorganisms ; 9(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361873

RESUMO

Within food plant cropping systems, microorganisms provide vital functions and ecosystem services, such as biological pest and disease control, promotion of plant growth and crop quality, and biodegradation of organic matter and pollutants. The beneficial effects of microorganisms can be achieved and/or enhanced by agricultural management measures that target the resident microbial biodiversity or by augmentation with domesticated and propagated microbial strains. This study presents a critical review of the current legislation and regulatory policies pertaining to the utilization of plant-beneficial microorganisms in the European Union (EU). For augmentative approaches, the nature of the intended effect and the product claim determine how a microbiological product is categorized and regulated, and pre-market authorization may be mandatory. Typically, microbial products have been incorporated into frameworks that were designed for evaluating non-living substances, and are therefore not well suited to the specific properties of live microorganisms. We suggest that regulatory harmonization across the sector could stimulate technical development and facilitate implementation of crop management methods employing microorganisms. Possible scenarios for regulatory reform in the longer term are discussed, but more investigation into their feasibility is needed. The findings of this study should serve as a catalyst for more efficient future use of plant-beneficial microorganisms, to the benefit of agriculture as well as the environment.

16.
EFSA J ; 19(7): e06689, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257732

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Schizochytrium limacinum, which is a synonym for Aurantiochytrium limacinum, was added to the QPS list. Of the 78 microorganisms notified to EFSA between October 2020 and March 2021, 71 were excluded; 16 filamentous fungi, 1 Dyella spp., 1 Enterococcus faecium, 7 Escherichia coli, 1 Streptomyces spp., 1 Schizochytrium spp. and 44 TUs that had been previously evaluated. Seven TUs were evaluated: Corynebacterium stationis and Kodamaea ohmeri were re-assessed because an update was requested for the current mandate. Anoxybacillus caldiproteolyticus, Bacillus paralicheniformis, Enterobacter hormaechei, Eremothecium ashbyi and Lactococcus garvieae were assessed for the first time. The following TUs were not recommended for QPS status: A. caldiproteolyticus due to the lack of a body of knowledge in relation to its use in the food or feed chain, E. hormaechei, L. garvieae and K. ohmeri due to their pathogenic potential, E. ashbyi and C. stationis due to a lack of body of knowledge on their occurrence in the food and feed chain and to their pathogenic potential. B. paralicheniformis was recommended for the QPS status with the qualification 'absence of toxigenic activity' and 'absence of genetic information to synthesize bacitracin'.

17.
EFSA J ; 19(1): e06377, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33537066

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. It is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at strain or product level, and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 36 microorganisms notified to EFSA between April and September 2020, 33 were excluded; seven filamentous fungi (including Aureobasidium pullulans based on recent taxonomic insights), one Clostridium butyricum, one Enterococcus faecium, three Escherichia coli, one Streptomyces spp. and 20 TUs that had been previously evaluated. Three TUs were evaluated; Methylorubrum extorquens and Mycobacterium aurum for the first time and Bacillus circulans was re-assessed because an update was requested in relation to a new mandate. M. extorquens and M. aurum are not recommended for QPS status due to the lack of a body of knowledge in relation to use in the food or feed chain and M. aurum, due to uncertainty concerning its pathogenicity potential. B. circulans was recommended for QPS status with the qualifications for 'production purposes only' and 'absence of cytotoxic activity'.

18.
EFSA J ; 18(2): e05965, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32874211

RESUMO

Qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA was updated with 54 biological agents, received between April and September 2019; 23 already had QPS status, 14 were excluded from the QPS exercise (7 filamentous fungi, 6 Escherichia coli, Sphingomonas paucimobilis which was already evaluated). Seventeen, corresponding to 16 TUs, were evaluated for possible QPS status, fourteen of these for the first time, and Protaminobacter rubrum, evaluated previously, was excluded because it is not a valid species. Eight TUs are recommended for QPS status. Lactobacillus parafarraginis and Zygosaccharomyces rouxii are recommended to be included in the QPS list. Parageobacillus thermoglucosidasius and Paenibacillus illinoisensis can be recommended for the QPS list with the qualification 'for production purposes only' and absence of toxigenic potential. Bacillus velezensis can be recommended for the QPS list with the qualification 'absence of toxigenic potential and the absence of aminoglycoside production ability'. Cupriavidus necator, Aurantiochytrium limacinum and Tetraselmis chuii can be recommended for the QPS list with the qualification 'production purposes only'. Pantoea ananatis is not recommended for the QPS list due to lack of body of knowledge in relation to its pathogenicity potential for plants. Corynebacterium stationis, Hamamotoa singularis, Rhodococcus aetherivorans and Rhodococcus ruber cannot be recommended for the QPS list due to lack of body of knowledge. Kodamaea ohmeri cannot be recommended for the QPS list due to safety concerns.

19.
EFSA J ; 18(2): e05966, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32874212

RESUMO

The qualified presumption of safety (QPS) was developed to provide a safety pre-assessment within EFSA for microorganisms. Strains belonging to QPS taxonomic units (TUs) still require an assessment based on a specific data package, but QPS status facilitates fast track evaluation. QPS TUs are unambiguously defined biological agents assessed for the body of knowledge, their safety and their end use. Safety concerns are, where possible, to be confirmed at strain or product level, and reflected as 'qualifications'. Qualifications need to be evaluated at strain level by the respective EFSA units. The lowest QPS TU is the species level for bacteria, yeasts and protists/algae, and the family for viruses. The QPS concept is also applicable to genetically modified microorganisms used for production purposes if the recipient strain qualifies for the QPS status, and if the genetic modification does not indicate a concern. Based on the actual body of knowledge and/or an ambiguous taxonomic position, the following TUs were excluded from the QPS assessment: filamentous fungi, oomycetes, streptomycetes, Enterococcus faecium, Escherichia coli and bacteriophages. The list of QPS-recommended biological agents was reviewed and updated in the current opinion and therefore now becomes the valid list. For this update, reports on the safety of previously assessed microorganisms, including bacteria, yeasts and viruses (the latter only when used for plant protection purposes) were reviewed, following an Extensive Literature Search strategy. All TUs previously recommended for 2016 QPS list had their status reconfirmed as well as their qualifications. The TUs related to the new notifications received since the 2016 QPS opinion was periodically evaluated for QPS status in the Statements of the BIOHAZ Panel, and the QPS list was also periodically updated. In total, 14 new TUs received a QPS status between 2017 and 2019: three yeasts, eight bacteria and three algae/protists.

20.
EFSA J ; 18(7): e06174, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760463

RESUMO

The qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. It is based on an assessment of the taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs of the 39 microorganisms notified to EFSA between October 2019 and March 2020, 33 were excluded, including five filamentous fungi, five Escherichia coli, two Enterococcus faecium, two Streptomyces spp. and 19 TUs already evaluated. Six TUs were evaluated. Akkermansia muciniphila was not recommended for QPS status due to safety concerns. Clostridium butyricum was not recommended because some strains contain pathogenicity factors. This TU was excluded for further QPS evaluation. Galdieria sulphuraria and Pseudomonas chlororaphis were also rejected due to a lack of body of knowledge. The QPS status of Corynebacterium ammoniagenes (with the qualification 'for production purposes only') and of Komagataella pastoris (with the qualification 'for enzyme production') was confirmed. In relation to the taxonomic revision of the Lactobacillus genus, previously designated Lactobacillus species will be reassigned to the new species and both the old and new names will be retained in the QPS list.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA