Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Synchrotron Radiat ; 22(3): 766-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931095

RESUMO

X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

2.
Faraday Discuss ; 185: 51-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26400760

RESUMO

The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.


Assuntos
Elétrons , Teoria Quântica , Energia Solar , Complexos de Coordenação/química , Modelos Moleculares , Rutênio/química , Luz Solar
3.
Phys Rev Lett ; 110(13): 138302, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581383

RESUMO

This work presents an x-ray absorption measurement by use of ionizing radiation generated by a femtosecond pulsed laser source. The spectrometer was a microcalorimetric array whose pixels are capable of accurately measuring energies of individual radiation quanta. An isotropic continuum x-ray spectrum in the few-keV range was generated from a laser plasma source with a water-jet target. X rays were transmitted through a ferrocene powder sample to the detector, whose pixels have average photon energy resolution ΔE=3.14 eV full-width-at-half-maximum at 5.9 keV. The bond distance of ferrocene was retrieved from this first hard-x-ray absorption fine-structure spectrum collected with an energy-dispersive detector. This technique will be broadly enabling for time-resolved observations of structural dynamics in photoactive systems.

4.
J Phys Chem A ; 116(40): 9878-87, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22970732

RESUMO

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.


Assuntos
Compostos Férricos/química , Teoria Quântica , Termodinâmica , Cinética , Processos Fotoquímicos , Espectrometria por Raios X , Fatores de Tempo , Água/química , Difração de Raios X
5.
Phys Rev Lett ; 104(19): 197401, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866996

RESUMO

Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.


Assuntos
Corantes/química , Condutividade Elétrica , Elétrons , Nanopartículas/química , Análise Espectral , Titânio/química , Óxido de Zinco/química , Absorção , Transporte de Elétrons , Cinética , Método de Monte Carlo , Tamanho da Partícula , Semicondutores
6.
J Am Chem Soc ; 130(50): 17038-43, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19007162

RESUMO

Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited-state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid (DHICA), its acetylated, methylated, and carboxylic ester derivatives, and two oligomers, a dimer and a trimer in the O-acetylated forms. The results show that (1) excited-state decays are faster for the trimer relative to the monomer; (2) for parent DHICA, excited-state lifetimes are much shorter in aqueous acidic medium (380 ps) as compared to organic solvent (acetonitrile, 2.6 ns); and (3) variation of fluorescence spectra and excited-state dynamics can be understood as a result of excited-state intramolecular proton transfer (ESIPT). The dependence on the DHICA oligomer size of the excited-state deactivation and its ESIPT mechanism provides important insight into the photostability and the photoprotective function of eumelanin. Mechanistic analogies with the corresponding processes in DNA and other biomolecules are recognized.


Assuntos
Melaninas/química , Solventes/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Estrutura Molecular , Peso Molecular , Fotoquímica , Espectrofotometria , Fatores de Tempo
7.
Nanoscale ; 8(12): 6249-57, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26763720

RESUMO

Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.

8.
FEBS Lett ; 465(2-3): 107-9, 2000 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-10631314

RESUMO

The transient absorption anisotropy spectrum of bacteriochlorophyll a (BChl a) in pyridine was measured in the wavelength interval 550-850 nm, 1 ps after optical excitation with a 792-nm femtosecond light pulse. In the wavelength region of Q(y) absorption and stimulated emission (775-825 nm), the anisotropy was found to be close to the theoretically expected value (0.4) for a two-level system. In the wavelength region 650-750 nm, where the transient absorption signal is dominated by excited state absorption, the anisotropy is reduced to approximately 0.18. Anisotropy kinetics were measured at several wavelengths and found to be constant within the time window 0-5 ps, showing that no internal dynamics of the BChl a molecule change the anisotropy on the time scale of tens of picoseconds.


Assuntos
Bacterioclorofilas/química , Polarização de Fluorescência/métodos , Piridinas/química
9.
FEBS Lett ; 496(1): 36-9, 2001 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-11343702

RESUMO

We have studied van der Waals contacts of the carotenoid rhodopin glucoside (RG) with the bacteriochlorophyll pigments absorbing at 800 nm (B800) in the crystal structure of Rhodopseudomonas acidophila, and the hydrogen positions were determined from quantum chemical calculations at the Hartree--Fock (6-31G) level. We have found strong evidence for hydrogen bonding between the B800 BChl and the RG from neighboring protomer units. The binding energy was estimated to be about 2 kcal/mol (700 cm(-1)). CI-singles approach and time-dependent density functional theory calculations of the B800--RG dimer indicate a red-shift (ca 2 nm) of the B800 Q(y) transition, along with a substantial increase of its oscillator strength, probably due to the hydrogen bonding.


Assuntos
Bacterioclorofilas/química , Carotenoides/química , Simulação por Computador , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Dimerização , Ligação de Hidrogênio , Complexos de Proteínas Captadores de Luz , Conformação Molecular , Rodopseudomonas , Relação Estrutura-Atividade
10.
Faraday Discuss ; 171: 169-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415532

RESUMO

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of aqueous Fe(bpy)3 with pulse-limited time resolution. In a combined setup permitting simultaneous X-ray diffuse scattering (XDS) and spectroscopic measurements at a MHz repetition rate we have unraveled the interplay between intramolecular dynamics and the intermolecular caging solvent response with 100 ps time resolution. On this time scale the ultrafast spin transition including intramolecular geometric structure changes as well as the concomitant bulk solvent heating process due to energy dissipation from the excited HS molecule are long completed. The heating is nevertheless observed to further increase due to the excess energy between HS and LS states released on a subnanosecond time scale. The analysis of the spectroscopic data allows precise determination of the excited population which efficiently reduces the number of free parameters in the XDS analysis, and both combined permit extraction of information about the structural dynamics of the first solvation shell.

11.
Nat Commun ; 4: 2334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23945881

RESUMO

Solar cells based on conjugated polymer and fullerene blends have been developed as a low-cost alternative to silicon. For efficient solar cells, electron-hole pairs must separate into free mobile charges that can be extracted in high yield. We still lack good understanding of how, why and when carriers separate against the Coulomb attraction. Here we visualize the charge separation process in bulk heterojunction solar cells by directly measuring charge carrier drift in a polymer:fullerene blend with ultrafast time resolution. We show that initially only closely separated (<1 nm) charge pairs are created and they separate by several nanometres during the first several picoseconds. Charge pairs overcome Coulomb attraction and form free carriers on a subnanosecond time scale. Numerical simulations complementing the experimental data show that fast three-dimensional charge diffusion within an energetically disordered medium, increasing the entropy of the system, is sufficient to drive the charge separation process.

13.
J Chem Phys ; 127(14): 144907, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935439

RESUMO

Exciton diffusion in ladder-type methyl-substituted polyparaphenylene film and solution was investigated by means of femtosecond pump-probe spectroscopy using a combined approach, analyzing exciton-exciton annihilation, and transient absorption depolarization properties. We show that the different views on the exciton dynamics offered by anisotropy decay and annihilation are required in order to obtain a correct picture of the energy transfer dynamics. Comparison of the exciton diffusion coefficient and exciton diffusion radius obtained for polymer film with the two techniques reveals that there is substantial short-range order in the film. Also in isolated chains there is considerable amount of order, as revealed from only partial anisotropy decay, which shows that only a small fraction of the excitons move to differently oriented polymer segments. It is further concluded that interchain energy transfer is faster than intrachain transfer, mainly as a result of shorter interchain distances between chromophoric units.


Assuntos
Metano/química , Polímeros/química , Absorção , Difusão , Transferência de Energia , Cinética , Espectrometria de Fluorescência
14.
Biophys J ; 61(4): 911-20, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19431825

RESUMO

Using low intensity picosecond absorption spectroscopy with independently tunable excitation and probing infrared pulses, we have studied the pathways of energy transport through the light-harvesting antenna pigments of the photosynthetic purple bacterium Rhodobacter sphaeroides. From the observed excited-state rise time of the red-most pigment B896 as a function of excitation wavelength it is concluded that the B850 pigment of LH2 is spectrally heterogeneous. For excitations originating in the B850 pigment this results in a fast channel (9 ps) that is mainly excited in the peak of the B850 absorption band, and a slow channel (35 ps) that is predominantly excited at approximately 840 nm. Upon excitation of B800, more than 90% of the excitations follow the fast path. From the observed kinetics it is concluded that the majority of the LH2 --> LH1 energy transfer takes place within at most a few picoseconds. The rate-limiting step in the whole energy transfer sequence appears to be the B896 --> reaction center transfer. The origin of the B850 heterogeneity and the slow 35-ps component is at the moment unclear. Possibly it represents a highly extended form of LH2 in which transfer to LH1 takes a relatively long time, due to a large number of transfer steps.

15.
Biophys J ; 70(5): 2373-9, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-9172762

RESUMO

The intensity dependence of picosecond kinetics in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum is studied at 77 K. By changing either the average excitation intensity or the pulse intensity we have been able to discriminate singlet-singlet and singlet-triplet annihilation. It is shown that the kinetics of both annihilation types are well characterized by the concept of percolative excitation dynamics leading to the time-dependent annihilation rates. The time dependence of these two types of annihilation rates is qualitatively different, whereas the dependencies can be related through the same adjustable parameter-a spectral dimension of fractal-like structures. The theoretical dependencies give a good fit to the experimental kinetics if the spectral dimension is equal to 1.5 and the overall singlet-singlet annihilation rate is close to the value obtained at room temperature. The percolative transfer is a consequence of spectral inhomogeneous broadening. The effect is more pronounced at lower temperatures because of the narrowing of homogeneous spectra.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodospirillum rubrum/metabolismo , Congelamento , Cinética , Modelos Químicos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Fatores de Tempo
16.
Biophys J ; 61(3): 694-703, 1992 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1504241

RESUMO

By low intensity picosecond absorption spectroscopy it is shown that the exciton lifetime in the light-harvesting antenna of Rhodopseudomonas (Rps.) viridis membranes with photochemically active reaction centers at room temperature is 60 +/- 10 ps. This lifetime reflects the overall trapping rate of the excitation energy by the reaction center. With photochemically inactive reaction centers, in the presence of P+, the exciton lifetime increases to 150 +/- 15 ps. Prereducing the secondary electron acceptor QA does not prevent primary charge separation, but slows it down from 60 to 90 +/- 10 ps. Picosecond kinetics measured at 77 K with inactive reaction centers indicates that the light-harvesting antenna is spectrally homogeneous. Picosecond absorption anisotropy measurements show that energy transfer between identical Bchlb molecules occurs on the subpicosecond time scale. Using these experimental results as input to a random-walk model, results in strict requirements for the antenna-RC coupling. The model analysis prescribes fast trapping (approximately 1 ps) and an approximately 0.5 escape probability from the reaction center, which requires a more tightly coupled RC and antenna, as compared with the Bchla-containing bacteria Rhodospirillum (R.) rubrum and Rhodobacter (Rb.) sphaeroides.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rodopseudomonas/metabolismo , Transferência de Energia , Cinética , Luz , Fatores de Tempo
17.
Biophys J ; 69(6): 2211-25, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8599629

RESUMO

Energy transfer within the peripheral light-harvesting antenna of the purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris was studied by one- and two-color pump-probe absorption spectroscopy with approximately 100-fs tunable pulses at room temperature and at 77 K. The energy transfer from B800 to B850 occurs with a time constant of 0.7 +/- 0.05 ps at room temperature and 1.8 +/- 0.2 ps at 77 K and is similar in both species. Anisotropy measurements suggest a limited but fast B800 <--> B800 transfer time (tau approximately 0.3 ps). This is analyzed as incoherent hopping of the excitation in a system of spectrally inhomogeneous antenna pigment-protein complexes, by a master equation approach. The simulations show that the measured B800 dynamics is well described as energy transfer with a characteristic average nearest-neighbor pairwise transfer time of 0.35 ps among approximately 10 Bchl molecules in a circular arrangement, in good agreement with the recent high-resolution structure of LH2. The possible presence of fast intramolecular relaxation processes within the Bchl a molecule was investigated by measurement of time-resolved difference absorption spectra and kinetics of Bchl a in solution and in low-temperature glasses. From these measurements it is concluded that fast transients observed at room temperature are due mainly to solvation processes, whereas at 77 K predominantly slower (> 10-ps) relaxation occurs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Estrutura Secundária de Proteína , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/metabolismo , Cromatóforos Bacterianos/metabolismo , Transferência de Energia , Polarização de Fluorescência/instrumentação , Polarização de Fluorescência/métodos , Cinética , Modelos Moleculares , Espectrofotometria/métodos , Termodinâmica , Fatores de Tempo
18.
Biochemistry ; 36(37): 11282-91, 1997 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-9287171

RESUMO

Previous work has suggested that the betaArg-10 residue forms part of the binding site for the B800 bacteriochlorophyll in the LH2 complex of Rhodobactersphaeroides [Crielaard, W., Visschers, R. W., Fowler, G. J. S., van Grondelle, R., Hellingwerf, K. J., Hunter, C. N. (1994) Biochim. Biophys. Acta1183, 473-482], and this is consistent with the X-ray crystallographic data that have been subsequently obtained for the related LH2 complex from Rhodopseudomonas acidophila [McDermott, G., Prince, S. M., Freer, A. A., Hawthornthwaite-Lawless, A. M., Papiz, M. Z., Cogdell, R. J., Isaacs, N. W. (1995) Nature 374, 517-521]. Therefore, in order obtain more information about the B800 binding site and its effect on the B800 absorption band, betaArg-10 was replaced by residues Met, His, Asn, Leu, and Lys (in addition to the Glu mutant described in our previous work); these residues were thought to represent a suitable range of amino acid shape, charge, and hydrogen-bonding ability. This new series of betaArg-10 mutants, in the form of LH2 complexes in the native membrane, has been characterized using a variety of biochemical and spectroscopic techniques in order to determine the ways in which the mutants differ from wild-type (WT) LH2. For example, most of the mutant LH2 complexes were found to have blue-shifted B800 absorption bands ranging from 794 to 783 nm at 77 K; the exception to this trend is the betaArg-10 to Met mutant, which absorbs maximally at 798 nm. These blue shifts decrease the spectral overlap between the "B800" and B850 pigments, which allowed us to examine the nature of the B800 to B850 transfer step for the betaArg-10 mutant LH2 complexes by carrying out a series of room temperature subpicosecond energy transfer measurements. The results of these measurements demonstrated that the reduced overlap leads to a slower B800 to B850 transfer, although the alterations at betaArg-10 were found to have little effect on the efficiency of internal energy transfer within LH2. Similarly, carotenoid to bacteriochlorophyll energy transfer was largely unaffected, although shifts in the excitation spectra in the carotenoid region were noted. These betaArg-10 mutant complexes provide an opportunity to investigate the structural requirements for the binding of monomeric bacteriochlorophyll and to examine the basis of the red shift seen for bacteriochlorophyll in photosynthetic complexes, in addition to providing new information about the environment of the carotenoid pigments in this complex.


Assuntos
Arginina/química , Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Sítios de Ligação , Cristalografia por Raios X , Transferência de Energia , Modelos Químicos , Conformação Proteica , Espectrofotometria Atômica
19.
Proc Natl Acad Sci U S A ; 96(9): 4914-7, 1999 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-10220393

RESUMO

Carotenoids are involved in a variety of biological functions, yet the underlying mechanisms are poorly understood, in part because of the long-standing difficulty in assigning the location of the first excited (S1) state. Here, we present a method for determining the energy of the forbidden S1 state, on the basis of ultrafast spectroscopy of the short lived level. Femtosecond transient absorption spectra and kinetics of the S1 --> S2 transition revealed the location of the intermediate level in two carotenoid species involved in the xanthophyll cycle, zeaxanthin and violaxanthin, and yielded surprising implications regarding the mechanism of photoregulation in photosynthesis.


Assuntos
Carotenoides/química , Transferência de Energia , beta Caroteno/análogos & derivados , Animais , Análise Espectral , Xantofilas , Zeaxantinas , beta Caroteno/química
20.
Biochemistry ; 29(13): 3203-7, 1990 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-2334690

RESUMO

Picosecond absorption spectroscopy has been used to investigate energy-transfer dynamics within the LH1 and LH2 light-harvesting complexes of three mutants of Rhodobacter sphaeroides. We demonstrate that both complexes are inhomogeneous; each contains a specialized pigment pool which absorbs maximally at a longer wavelength. Within LH2 (mutant NF57), Bchl850 transfers energy to Bchl870 in 39 +/- 9 ps; within LH1 (mutants M21 and M2192), energy is transferred from Bchl875 to Bchl896 in 22 +/- 4 and 35 +/- 5 ps, respectively. Examination of the decay of induced absorption anisotropy indicates that each of these specialized pools exists in a state which is highly organized with respect to the remainder of the pigments. Such an arrangement may facilitate and direct energy migration toward the reaction center.


Assuntos
Transferência de Energia , Rhodobacter sphaeroides/metabolismo , Polarização de Fluorescência/métodos , Cinética , Luz , Mutação , Rhodobacter sphaeroides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA