Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612741

RESUMO

Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions. While 2D cultures showed robust surface marker expressions, 3D cultures exhibited reduced levels of CD44, CD90.2, and CD105. Adipogenic differentiation in 3D organotypic ADSCs faced challenges, with decreased organoid size and limited activation of adipogenesis-related genes. Key adipocyte markers, such as lipoprotein lipase (LPL) and adipoQ, were undetectable in 3D-cultured ADSCs, unlike positive controls in 2D-cultured mesenchymal stem cells (MSCs). Surprisingly, 3D-cultured ADSCs underwent mesenchymal-epithelial transition (MET), evidenced by increased E-cadherin and EpCAM expression and decreased mesenchymal markers. This study highlights successful ADSC organoid formation, notable MSC phenotype changes in 3D culture, adipogenic differentiation challenges, and a distinctive shift toward an epithelial-like state. These findings offer insights into the potential applications of 3D-cultured ADSCs in regenerative medicine, emphasizing the need for further exploration of underlying molecular mechanisms.


Assuntos
Adiposidade , Sistemas Microfisiológicos , Animais , Camundongos , Obesidade , Organoides , Adipócitos
2.
Carcinogenesis ; 33(1): 77-83, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22095071

RESUMO

Ovarian cancer is a gynecological cancer with a high death rate. We utilized global gene expression profiles of ovarian carcinomas obtained by complementary DNA (cDNA) microarray to identify ovarian cancer-specific proteins. CD9 was upregulated in ovarian carcinomas, and overexpression of the CD9 protein was detected in ovarian carcinomas by immunohistochemistry. CD9 was also overexpressed in several cancer cell lines, including ovarian cancer cells. In order to elucidate the biological significance of highly expressed CD9 in cancer cells, functional studies of CD9 were performed by ectopic expression, knockdown of CD9 using small interfering RNA (siRNA) and blockage of CD9 activity using the CD9-specific monoclonal antibody ALB6. Ectopic CD9 induced cell survival. In order to identify signaling pathways related to CD9, the gene expressions of CD9/SKOV3 cells were analyzed by cDNA microarray. Among the many upregulated genes, tumor necrosis factor (TNF)-α was induced in CD9/SKOV3 cells. The effect of overexpressed CD9 on the downstream signaling events of TNF-α was further investigated. In CD9/SKOV3 cells, the nuclear factor-kappaB (NF-κB)-signaling pathway was constitutively activated. Knockdown of CD9 by siRNA and blockage of CD9 activity by ALB6 in ovarian cancer cells demonstrated that constitutive activation of NF-κB is CD9 dependent and that CD9 is involved in anti-apoptosis. A CD9 functional study was performed in an ovarian cancer-xenograft mouse by injecting ALB6 into the peritoneum. ALB6 resulted in reduced tumor weight compared with that of control IgG(1). Collectively, these results demonstrate that CD9 functions as an oncogene and represents a target for the development of cancer-specific therapeutics.


Assuntos
NF-kappa B/metabolismo , Neoplasias Ovarianas/genética , Tetraspanina 29/fisiologia , Fator de Necrose Tumoral alfa/genética , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Tetraspanina 29/análise , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Metab ; 66: 101625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374631

RESUMO

OBJECTIVE: The endocrine pancreatic ß-cells play a pivotal role in maintaining whole-body glucose homeostasis and its dysregulation is a consistent feature in all forms of diabetes. However, knowledge of intracellular regulators that modulate ß-cell function remains incomplete. We investigated the physiological role of ROCK1 in the regulation of insulin secretion and glucose homeostasis. METHODS: Mice lacking ROCK1 in pancreatic ß-cells (RIP-Cre; ROCK1loxP/loxP, ß-ROCK1-/-) were studied. Glucose and insulin tolerance tests as well as glucose-stimulated insulin secretion (GSIS) were measured. An insulin secretion response to a direct glucose or pyruvate or pyruvate kinase (PK) activator stimulation in isolated islets from ß-ROCK1-/- mice or ß-cell lines with knockdown of ROCK1 was also evaluated. A proximity ligation assay was performed to determine the physical interactions between PK and ROCK1. RESULTS: Mice with a deficiency of ROCK1 in pancreatic ß-cells exhibited significantly increased blood glucose levels and reduced serum insulin without changes in body weight. Interestingly, ß-ROCK1-/- mice displayed a progressive impairment of glucose tolerance while maintaining insulin sensitivity mostly due to impaired GSIS. Consistently, GSIS markedly decreased in ROCK1-deficient islets and ROCK1 knockdown INS-1 cells. Concurrently, ROCK1 blockade led to a significant decrease in intracellular calcium and ATP levels and oxygen consumption rates in isolated islets and INS-1 cells. Treatment of ROCK1-deficient islets or ROCK1 knockdown ß-cells either with pyruvate or a PK activator rescued the impaired GSIS. Mechanistically, we observed that glucose stimulation in ß-cells greatly enhanced ROCK1 binding to PK. CONCLUSIONS: Our findings demonstrate that ß-cell ROCK1 is essential for glucose-stimulated insulin secretion and for glucose homeostasis and that ROCK1 acts as an upstream regulator of glycolytic pyruvate kinase signaling.


Assuntos
Secreção de Insulina , Insulina , Piruvato Quinase , Quinases Associadas a rho , Animais , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/fisiologia , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Piruvatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA