Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 303, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112999

RESUMO

BACKGROUND: Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS: In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS: In vitro, IL-1ß, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION: Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos Endogâmicos ICR , Trombina , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células RAW 264.7 , Trombina/metabolismo , Escherichia coli , Masculino , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Escherichia coli/terapia , Resultado do Tratamento , Modelos Animais de Doenças , Humanos
2.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003458

RESUMO

Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)' immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos , Ratos , Animais , Receptor 3 Toll-Like , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like , Escherichia coli , Macrófagos , Citocinas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/fisiologia
3.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175961

RESUMO

Mesenchymal stem cells (MSCs) have been studied as novel therapeutic agents because of their immunomodulatory properties in inflammatory diseases. The suppressor of cytokine signaling (SOCS) proteins are key regulators of the immune response and macrophage modulation. In the present study, we hypothesized that SOCS in MCSs might mediate macrophage modulation and tested this in a bacteria-induced acute lung injury (ALI) mouse model. The macrophage phenotype was observed in RAW264.7 alveolar macrophages exposed to lipopolysaccharide (LPS) in an in vitro model, and in the ALI mouse model induced by tracheal administration of Escherichia coli (1 × 107 CFU in 0.05mL PBS). In LPS-exposed RAW264.7 cells, the levels of markers of M1 macrophages, such as CD86 and pro-inflammatory cytokines (IL-1α, IL-1ß, IL-6 and TNF-α), significantly increased, but they significantly reduced after MSC treatment. Meanwhile, the levels of markers of M2 macrophages, such as CD204 and anti-inflammatory cytokines (IL-4 and IL-10), increased after LPS exposure, and further significantly increased after MSC treatment. This regulatory effect of MSCs on M1/M2 macrophage polarization was significantly abolished by SOCS3 inhibition. In the E. coli-induced ALI model, tissue injury and inflammation in the mouse lung were significantly attenuated by the transplantation of MSCs, but not by SOCS3-inhibited MSCs. The regulatory effect of MSCs on M1/M2 macrophage polarization was observed in the lung injury model but was significantly abolished by SOCS3 inhibition. Taken together, our findings suggest that SOCS3 is an important mediator for macrophage modulation in anti-inflammatory properties of MSCs.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Camundongos , Animais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Lipopolissacarídeos/toxicidade , Escherichia coli , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Proteínas Supressoras da Sinalização de Citocina/genética , Anti-Inflamatórios , Interleucina-1alfa , Pulmão
4.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743045

RESUMO

We attempted to determine whether intratracheal (IT) transplantation of mesenchymal stem cells (MSCs) could simultaneously attenuate hyperoxia-induced lung injuries and microbial dysbiosis of the lungs, brain, and gut in newborn rats. Newborn rats were exposed to hyperoxia (90% oxygen) for 14 days. Human umbilical cord blood-derived MSCs (5 × 105) were transplanted via the IT route on postnatal day (P) five. At P14, the lungs were harvested for histological, biochemical, and microbiome analyses. Bacterial 16S ribosomal RNA genes from the lungs, brain, and large intestine were amplified, pyrosequenced, and analyzed. IT transplantation of MSCs simultaneously attenuated hyperoxia-induced lung inflammation and the ensuing injuries, as well as the dysbiosis of the lungs, brain, and gut. In correlation analyses, lung interleukin-6 (IL-6) levels were significantly positively correlated with the abundance of Proteobacteria in the lungs, brain, and gut, and it was significantly inversely correlated with the abundance of Firmicutes in the gut and lungs and that of Bacteroidetes in the lungs. In conclusion, microbial dysbiosis in the lungs, brain, and gut does not cause but is caused by hyperoxic lung inflammation and ensuing injuries, and IT transplantation of MSCs attenuates dysbiosis in the lungs, brain, and gut, primarily by their anti-oxidative and anti-inflammatory effects.


Assuntos
Hiperóxia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Disbiose/patologia , Disbiose/terapia , Hiperóxia/complicações , Hiperóxia/patologia , Pulmão/patologia , Células-Tronco Mesenquimais/patologia , Ratos
5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142517

RESUMO

Formyl peptide receptor (FPR) 2 is known to play a critical role in regulating inflammation, including either the pro-inflammatory or pro-resolving effects. However, its role in neonatal hyperoxia-induced lung injury has not been delineated. In this study, we investigate whether mesenchymal stem cells (MSCs) attenuate hyperoxia-induced neonatal lung injury by regulating FPR2 activity. We observed a significant increase in FPR2 levels in alveolar macrophages (RAW264.7 cells) after H2O2-induced stress, which decreased after MSC treatment. In the H2O2-induction model, increased levels of inflammatory cytokines (IL-1α and TNF-α) were significantly reduced in RAW264.7 cells after treatment with WRW4, an inhibitor of FPR2, or MSCs. Viability of lung epithelial cells and endothelial cells was significantly improved when cultured in the conditioned media of RAW264.7 cells treated with WRW4 or MSCs, compared to when cultured in the conditioned media of control RAW265.7 cells exposed to H2O2. For the in vivo study, wild-type and FPR2 knockout (FPR2-/-) C57/BL6 mouse pups were randomly exposed to 80% oxygen or room air from postnatal day (P) 1 to P14. At P5, 2 × 105 MSCs were transplanted intratracheally. MSCs reduced the elevated FPR2 activity at P7 and improved the decreased FPR2 activity as well as the increased immuno-stained FPR2 activity in alveolar macrophages in hyperoxic lungs at P14. Both FPR2-/- and MSCs similarly attenuated impaired alveolarization and angiogenesis, and increased apoptosis and inflammation of hyperoxic lungs without synergistic effects. Our findings suggest that the protective effects of MSCs in hyperoxic lung injury might be related to indirect modulation of FPR2 activity, at least of alveolar macrophages in neonatal mice.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Camundongos , Animais Recém-Nascidos , Meios de Cultivo Condicionados , Citocinas , Modelos Animais de Doenças , Células Endoteliais , Peróxido de Hidrogênio , Hiperóxia/complicações , Inflamação , Pulmão , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Oxigênio , Receptores de Formil Peptídeo/genética , Fator de Necrose Tumoral alfa
6.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012334

RESUMO

Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.


Assuntos
Lacticaseibacillus casei , Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Administração Oral , Animais , Anticorpos/uso terapêutico , Modelos Animais de Doenças , Humanos , Lacticaseibacillus casei/genética , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/patologia
7.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457266

RESUMO

Severe intraventricular hemorrhage (IVH) remains a major cause of high mortality and morbidity in extremely preterm infants. Mesenchymal stem cell (MSC) transplantation is a possible therapeutic option, and development of therapeutics with enhanced efficacy is necessary. This study investigated whether thrombin preconditioning improves the therapeutic efficacy of human Wharton's jelly-derived MSC transplantation for severe neonatal IVH, using a rat model. Severe neonatal IVH was induced by injecting 150 µL blood into each lateral ventricle on postnatal day (P) 4 in Sprague-Dawley rats. After 2 days (P6), naïve MSCs or thrombin-preconditioned MSCs (1 × 105/10 µL) were transplanted intraventricularly. After behavioral tests, brain tissues and cerebrospinal fluid of P35 rats were obtained for histological and biochemical analyses, respectively. Thrombin-preconditioned MSC transplantation significantly reduced IVH-induced ventricular dilatation on in vivo magnetic resonance imaging, which was coincident with attenuations of reactive gliosis, cell death, and the number of activated microglia and levels of inflammatory cytokines after IVH induction, compared to naïve MSC transplantation. In the behavioral tests, the sensorimotor and memory functions significantly improved after transplantation of thrombin-preconditioned MSCs, compared to naïve MSCs. Overall, thrombin preconditioning significantly improves the therapeutic potential and more effectively attenuates brain injury, including progressive ventricular dilatation, gliosis, cell death, inflammation, and neurobehavioral functional impairment, in newborn rats with induced severe IVH than does naïve MSC transplantation.


Assuntos
Hemorragia Cerebral , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Trombina , Animais , Animais Recém-Nascidos , Hemorragia Cerebral/metabolismo , Gliose/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Trombina/metabolismo , Trombina/uso terapêutico
8.
J Cell Mol Med ; 25(22): 10430-10440, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34651412

RESUMO

Hypoxic-ischaemic encephalopathy (HIE) is a type of brain injury affecting approximately 1 million newborn babies per year worldwide, the only treatment for which is therapeutic hypothermia. Thrombin-preconditioned mesenchymal stem cells (MSCs) exert neuroprotective effects by enriching cargo contents and boosting exosome biogenesis, thus showing promise as a new therapeutic strategy for HIE. This study was conducted to evaluate the tissue distribution and potential toxicity of thrombin-preconditioned human Wharton's jelly-derived mesenchymal stem cells (th-hWJMSCs) in animal models before the initiation of clinical trials. We investigated the biodistribution, tumorigenicity and general toxicity of th-hWJMSCs. MSCs were administered the maximum feasible dose (1 × 105 cells/10 µL/head) once, or at lower doses into the cerebral ventricle. To support the clinical use of th-hWJMSCs for treating brain injury, preclinical safety studies were conducted in newborn Sprague-Dawley rats and BALB/c nude mice. In addition, growth parameters were evaluated to assess the impact of th-hWJMSCs on the growth of newborn babies. Our results suggest that th-hWJMSCs are non-toxic and non-tumorigenic in rodent models, survive for up to 7 days in the brain and hold potential for HIE therapy.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Trombina/metabolismo , Geleia de Wharton/citologia , Animais , Animais Recém-Nascidos , Biomarcadores , Transformação Celular Neoplásica , Gerenciamento Clínico , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos , Trombina/farmacologia
9.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768827

RESUMO

We investigated whether irradiated brain-derived neurotropic factor (BDNF)-overexpressing engineered human mesenchymal stem cells (BDNF-eMSCs) improve paracrine efficiency and, thus, the beneficial potency of naïve MSCs against severe hypoxic ischemic (HI) brain injury in newborn rats. Irradiated BDNF-eMSCs hyper-secreted BDNF > 10 fold and were >5 fold more effective than naïve MSCs in attenuating the oxygen-glucose deprivation-induced increase in cytotoxicity, oxidative stress, and cell death in vitro. Only the irradiated BDNF-eMSCs, but not naïve MSCs, showed significant attenuating effects on severe neonatal HI-induced short-term brain injury scores, long-term progress of brain infarct, increased apoptotic cell death, astrogliosis and inflammatory responses, and impaired negative geotaxis and rotarod tests in vivo. Our data, showing better paracrine potency and the resultant better therapeutic efficacy of the irradiated BDNF-eMSCs, compared to naïve MSCs, suggest that MSCs transfected with the BDNF gene might represent a better, new therapeutic strategy against severe neonatal HI brain injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Morte Celular/fisiologia , Expressão Gênica , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Glia ; 68(1): 178-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441125

RESUMO

Severe intraventricular hemorrhage (IVH) in premature infants triggers reactive gliosis, causing acute neuronal death and glial scar formation. Transplantation of mesenchymal stem cells (MSCs) has often showed improved CNS recovery in an IVH model, but whether this response is related to reactive glial cells is still unclear. Herein, we suggest that MSCs impede the response of reactive microglia rather than astrocytes, thereby blocking neuronal damage. Astrocytes alone showed mild reactiveness under hemorrhagic conditions mimicked by thrombin treatment, and this was not blocked by MSC-conditioned medium (MSC-CM) in vitro. In contrast, thrombin-induced microglial activation and release of proinflammatory cytokines were inhibited by MSC-CM. Interestingly, astrocytes showed greater reactive response when co-cultured with microglia, and this was abolished in the presence of MSC-CM. Gene expression profiles in microglia revealed that transcript levels of genes for immune response and proinflammatory cytokines were altered by thrombin treatment. This result coincided with the robust phosphorylation of STAT1 and p38 MAPK, which might be responsible for the production and release of proinflammatory cytokines. Furthermore, application of MSC-CM diminished thrombin-mediated phosphorylation of STAT1 and p38 MAPK, supporting the acute anti-inflammatory role of MSCs under hemorrhagic conditions. In line with this, activation of microglia and consequent cytokine release were impaired in Stat1-null mice. However, reactive response in Stat1-deficient astrocytes was maintained. Taken together, our results demonstrate that MSCs mainly block the activation of microglia involving STAT1-mediated cytokine release and subsequent reduction of reactive astrocytes.


Assuntos
Astrócitos/metabolismo , Hemorragia Cerebral Intraventricular/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/patologia , Células Cultivadas , Hemorragia Cerebral Intraventricular/terapia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Ratos , Ratos Sprague-Dawley
11.
Pediatr Int ; 62(3): 347-356, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31846163

RESUMO

BACKGROUND: Neonatal meningitis caused by Escherichia coli results in high mortality and neurological disabilities, and the concomitant systemic bacteremia confounds its mortality and brain injury. This study developed an experimental model of neonatal ventriculitis without concomitant systemic bacteremia by determining the bacterial inoculum of K1 capsule-negative E. coli by intraventricular injection in newborn rats. METHODS: We carried out intraventricular injections 1 × 102 (low dose), 5 × 102 (medium dose), or 1 × 103 (high dose) colony-forming units (CFU) of K1 (-) E. coli (EC5ME) in Sprague-Dawley rats at postnatal day (P) 11. Ampicillin was started at P12. Blood and cerebrospinal fluid (CSF) cultures were performed at 6 h, 1 day, and 6 days after inoculation. Brain magnetic resonance imaging (MRI) was performed at P12 and P17. Survival was monitored, and brain tissue was obtained for histological and biochemical analyses at P12 and P17. RESULTS: Survival was inoculum dose-dependent, with the lowest survival in the high-dose group (20%) compared with the medium- (67%) or low- (73%) dose groups. CSF bacterial counts in the low- and medium-dose groups were significantly lower than that in the high-dose group at 6 h, but not at 24 h after inoculation. No bacteria were isolated from the blood throughout the experiment or from the CSF at P17. Brain MRI showed an inoculum dose-dependent increase in the extent of brain injury and inflammatory responses. CONCLUSIONS: We developed a newborn rat model of bacterial ventriculitis without concomitant systemic bacteremia by intraventricular injection of EC5ME.


Assuntos
Ventriculite Cerebral/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Injeções Intraventriculares/métodos , Meningites Bacterianas/microbiologia , Animais , Animais Recém-Nascidos , Bacteriemia/patologia , Ventriculite Cerebral/patologia , Modelos Animais de Doenças , Infecções por Escherichia coli/patologia , Humanos , Meningites Bacterianas/patologia , Ratos , Ratos Sprague-Dawley
12.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197089

RESUMO

We investigated the role of protease-activated receptor (PAR)-mediated signaling pathways in the biogenesis of human umbilical cord blood-derived mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) and the enrichment of their cargo content after thrombin preconditioning. Immunoblot analyses showed that MSCs expressed two PAR subtypes: PAR-1 and PAR-3. Thrombin preconditioning significantly accelerated MSC-derived EV biogenesis more than five-fold and enriched their cargo contents by more than two-fold via activation of Rab5, early endosomal antigen (EEA)-1, and the extracellular signal regulated kinase (ERK)1/2 and AKT signaling pathways. Blockage of PAR-1 with the PAR-1-specific antagonist, SCH79797, significantly suppressed the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways and subsequently increased EV production and enriched EV cargo contents. Combined blockage of PAR-1 and PAR-3 further and significantly inhibited the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways, accelerated EV production, and enriched EV cargo contents. In summary, thrombin preconditioning boosted the biogenesis of MSC-derived EVs and enriched their cargo contents largely via PAR-1-mediated pathways and partly via PAR-1-independent, PAR-3-mediated activation of Rab5, EEA-1, and the ERK1/2 and AKT signaling pathways.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais , Trombina/farmacologia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor PAR-1/agonistas , Receptor PAR-1/antagonistas & inibidores , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
13.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137455

RESUMO

We investigated whether thrombin preconditioning of human Wharton's jelly-derived mesenchymal stem cells (MSCs) improves paracrine potency and thus the therapeutic efficacy of naïve MSCs against severe hypoxic ischemic encephalopathy (HIE). Thrombin preconditioning significantly enhances the neuroprotective anti-oxidative, anti-apoptotic, and anti-cytotoxic effects of naïve MSCs against oxygen-glucose deprivation (OGD) of cortical neurons in vitro. Severe HIE was induced in vivo using unilateral carotid artery ligation and hypoxia for 2 h and confirmed using brain magnetic resonance imaging (MRI) involving >40% of ipsilateral hemisphere at postnatal day (P) 7 in newborn rats. Delayed intraventricular transplantation of 1 × 105 thrombin preconditioned but not naïve MSCs at 24 h after hypothermia significantly enhanced observed anti-inflammatory, anti-astroglial, and anti-apoptotic effects and the ensuing brain infarction; behavioral tests, such as cylinder rearing and negative geotaxis tests, were conducted at P42. In summary, thrombin preconditioning of human Wharton's jelly-derived MSCs significantly boosted the neuroprotective effects of naïve MSCs against OGD in vitro by enhancing their anti-oxidative, anti-apoptotic, and anti-cytotoxic effects, and significantly attenuated the severe HIE-induced brain infarction and improved behavioral function tests in vivo by maximizing their paracrine anti-inflammatory, anti-astroglial, and anti-apoptotic effects.


Assuntos
Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Trombina/farmacologia , Animais , Apoptose , Hipóxia Celular , Células Cultivadas , Hipóxia Fetal/complicações , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Recém-Nascido , Masculino , Ratos , Ratos Sprague-Dawley
14.
Pediatr Res ; 84(5): 778-785, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30188499

RESUMO

OBJECTIVE: Neonatal meningitis caused by Escherichia coli results in significant mortality and neurological disabilities, with few effective treatments. Recently, we demonstrated that human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) transplantation attenuated E. coli-induced severe pneumonia, primarily by reducing inflammation and enhancing bacterial clearance. This study aimed to determine whether intraventricular transplantation of hUCB-MSCs attenuated the brain injury in E. coli meningitis in newborn rats. METHODS: Meningitis without concomitant bacteremia was induced by intraventricular injection of 5 × 102 colony forming units of K1 (-) E. coli in rats at postnatal day (P)11, and hUCB-MSCs (1 × 105) were transplanted intraventricularly 6 h after induction of meningitis. Antibiotics was started 24 h after modeling. RESULT: Meningitis modeling induced robust proliferation of E. coli in the cerebrospinal fluid and increased mortality in rat pups, and MSC transplantation significantly reduced this bacterial growth and the mortality rate. Impaired sensorimotor function in the meningitis rats was ameliorated by MSCs injection. MSCs transplantation also attenuated meningitis caused brain injury including cerebral ventricular dilatation, brain cell death, reactive gliosis, and inflammatory response. CONCLUSION: Intraventricular transplantation of hUCB-MSCs significantly improved survival and attenuated the brain injury via anti-inflammatory and antibacterial effects in experimental neonatal E. coli meningitis.


Assuntos
Lesões Encefálicas/prevenção & controle , Meningite devida a Escherichia coli/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Animais Recém-Nascidos , Peso Corporal , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Contagem de Colônia Microbiana , Citocinas/metabolismo , Escherichia coli/isolamento & purificação , Mediadores da Inflamação/metabolismo , Imageamento por Ressonância Magnética , Meningite devida a Escherichia coli/complicações , Meningite devida a Escherichia coli/diagnóstico por imagem , Meningite devida a Escherichia coli/metabolismo , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida
15.
Cell Microbiol ; 18(3): 424-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26350435

RESUMO

Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood- derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli- induced acute lung injury primarily by down- modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up- regulation of toll- like receptors (TLR)- 2 and TLR- 4, and ß- defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA- mediated knockdown of TLR- 4, but not TLR- 2, and restored by BD2 supplementation. The in vivo down- modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli- induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR- 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR- 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR- 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli- induced pneumonia and the ensuing acute lung injury through both its anti- inflammatory and antibacterial effects.


Assuntos
Escherichia coli/patogenicidade , Interações Hospedeiro-Patógeno , Células-Tronco Mesenquimais/fisiologia , Receptor 4 Toll-Like/metabolismo , beta-Defensinas/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Animais , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/microbiologia , Camundongos Endogâmicos ICR , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Gravidez , Receptor 4 Toll-Like/genética , beta-Defensinas/genética
16.
Pediatr Res ; 80(3): 415-24, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27064241

RESUMO

BACKGROUND: Bronchopulmonary dysplasia is an independent risk factor for adverse neurodevelopmental outcomes in premature infants. We investigated whether attenuation of hyperoxic lung injury with intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) could simultaneously mitigate brain damage in neonatal rats. METHODS: Newborn Sprague-Dawley rats were exposed to hyperoxia or normoxia conditions for 14 d. MSCs (5 × 10(5) cells) were transplanted intratracheally at postnatal day (P) 5. At P14, lungs and brains were harvested for histological and biochemical analyses. RESULTS: Hyperoxic lung injuries, such as impaired alveolarization evident from increased mean linear intercept (MLI) and elevated inflammatory cytokine levels were significantly alleviated with MSC transplantation. Hyperoxia decreased brain weight, increased brain cell death, and induced hypomyelination. MSC transplantation significantly ameliorated hyperoxia-induced increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the dentate gyrus and reduced myelin basic protein. In correlation analyses, brain weight and myelin basic protein (MBP) were significantly inversely correlated with lung MLI and inflammatory cytokines, while TUNEL-positive brain cell number showed a significant positive correlation with lung MLI. CONCLUSION: Despite no significant improvement in short-term neurofunctional outcome, intratracheal transplantation of MSCs simultaneously attenuated hyperoxic lung and brain injuries in neonatal rats, with the extent of such attenuation being closely linked in the two tissues.


Assuntos
Lesões Encefálicas/terapia , Displasia Broncopulmonar/terapia , Hiperóxia , Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Traqueia/patologia , Animais , Animais Recém-Nascidos , Peso ao Nascer , Citocinas/metabolismo , Modelos Animais de Doenças , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Tamanho do Órgão , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
17.
Biomacromolecules ; 17(11): 3694-3705, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27775884

RESUMO

Epidermal growth factor (EGF) has been recognized as an excellent wound healing agent due to its therapeutic function stimulating skin cell growth, proliferation and differentiation. However, the transdermal delivery of EGF poses a significant challenge due to its short half-life and lack of efficient formulation. Here, to improve the transdermal delivery efficiency, EGF was conjugated to hyaluronate (HA), which was formulated into a patch-type film for skin wound healing. HA-EGF conjugate was synthesized by coupling reaction between aldehyde-modified HA and N-terminal amine group of EGF to minimize the loss of biological activities. The HA-EGF conjugates exhibited similar biological activities with native EGF as confirmed by ELISA and proliferation tests using murine and human fibroblasts. For the efficient topical delivery, HA-EGF conjugates were incorporated into a matrix film of high molecular weight HA. Two-photon microscopy clearly visualized more efficient transdermal delivery of HA-EGF conjugates to both normal skin and peripheral tissues around the wound area rather than that of EGF. Optical imaging and ELISA after in vivo transdermal delivery showed that the conjugation of EGF to HA retarded its degradation and extended its residence time in the wound area. Furthermore, in vivo transdermal delivery of HA-EGF conjugate in the patch-type HA film resulted in significantly improved regeneration of skin tissues even into hypodermis.


Assuntos
Fator de Crescimento Epidérmico/uso terapêutico , Ácido Hialurônico/uso terapêutico , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Administração Cutânea , Animais , Fator de Crescimento Epidérmico/química , Humanos , Ácido Hialurônico/química , Camundongos , Regeneração/efeitos dos fármacos , Pele/lesões , Pele/ultraestrutura
18.
Cytotherapy ; 17(8): 1025-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25863963

RESUMO

BACKGROUND AIMS: The aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood-derived mesenchymal stromal cells (HUMs), human adipose tissue-derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared. METHODS: Hyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 10(5) cells) were given intratracheally at postnatal day 5. RESULTS: Hyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group. CONCLUSIONS: HUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells.


Assuntos
Hiperóxia/terapia , Leucócitos Mononucleares/transplante , Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Tecido Adiposo/citologia , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Displasia Broncopulmonar/terapia , Linhagem Celular , Citocinas/metabolismo , Sangue Fetal/citologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hiperóxia/patologia , Leucócitos Mononucleares/citologia , Lesão Pulmonar/patologia , Macrófagos Alveolares/imunologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Traqueia/citologia , Traqueia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Am J Respir Cell Mol Biol ; 51(3): 391-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24669883

RESUMO

Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) protects against neonatal hyperoxic lung injury by a paracrine rather than a regenerative mechanism. However, the role of paracrine factors produced by the MSCs, such as vascular endothelial growth factor (VEGF), has not been delineated. This study examined whether VEGF secreted by MSCs plays a pivotal role in protecting against neonatal hyperoxic lung injury. VEGF was knocked down in human UCB-derived MSCs by transfection with small interfering RNA specific for human VEGF. The in vitro effects of MSCs with or without VEGF knockdown or neutralizing antibody were evaluated in a rat lung epithelial (L2) cell line challenged with H2O2. To confirm these results in vivo, newborn Sprague-Dawley rats were exposed to hyperoxia (90% O2) for 14 days. MSCs (1 × 10(5) cells) with or without VEGF knockdown were administered intratracheally at postnatal Day 5. Lungs were serially harvested for biochemical and histologic analyses. VEGF knockdown and antibody abolished the in vitro benefits of MSCs on H2O2-induced cell death and the up-regulation of inflammatory cytokines in L2 cells. VEGF knockdown also abolished the in vivo protective effects of MSCs in hyperoxic lung injury, such as the attenuation of impaired alveolarization and angiogenesis, reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive and ED-1-positive cells, and down-regulation of proinflammatory cytokine levels. Our data indicate that VEGF secreted by transplanted MSCs is one of the critical paracrine factors that play seminal roles in attenuating hyperoxic lung injuries in neonatal rats.


Assuntos
Regulação da Expressão Gênica , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/química , Linhagem Celular , Transplante de Células , Sangue Fetal/metabolismo , Inativação Gênica , Humanos , Peróxido de Hidrogênio/química , Inflamação , Oxigênio/química , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Biomedicines ; 12(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540298

RESUMO

Mitochondrial DNA (mtDNA) released from dead or injured cells can activate inflammation, and mesenchymal stem cell (MSC) transplantation can reduce inflammation and injury. However, it has not been tested whether the release of mtDNA can be reduced by MSC transplantation. We hypothesized that the level of extracellular mtDNA would be increased after hyperoxia-induced lung injury but reduced after lung injury attenuation by MSC therapy in our newborn rat model. In an in vitro study using a rat lung epithelial L2 cell line, we found that the level of extracellular mtDNA was significantly increased with H2O2-induced cell death but reduced after MSC co-incubation. In an in vivo study, we confirmed that the levels of cell death, extracellular mtDNA, and inflammatory cytokines were significantly increased in hyperoxic newborn rat lungs but reduced after MSC transplantation. The levels of extracellular mtDNA were significantly and positively correlated with the levels of the inflammatory cytokines. The TLR9/MyD88/NF-κB pathway, which is activated by binding to mtDNA, was also significantly upregulated but downregulated after MSC transplantation. We found a significant positive correlation between inflammatory cytokines and extracellular mtDNA in intubated neonates. The levels of inflammatory cytokines and extracellular mtDNA changed over time in a similar pattern in transtracheal aspirate samples from intubated neonates. In conclusion, increased levels of extracellular mtDNA are associated with increased inflammation in hyperoxia-induced lung injury, and attenuation of lung inflammation by MSC therapy is associated with reduced levels of extracellular mtDNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA