Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116444, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850740

RESUMO

Electrolyte-gated organic synaptic transistors (EGOSTs) can have versatile synaptic plasticity in a single device, so they are promising as components of neuromorphic implants that are intended for use in neuroprosthetic electronic nerves that are energy-efficient and have simple system structure. With the advancement in transistor properties of EGOSTs, the commercialization of neuromorphic implants for practical long-term use requires consistent operation, so they must be stable in vivo. This requirement demands strategies that maintain electronic and ionic transport in the devices while implanted in the human body, and that are mechanically, environmentally, and operationally stable. Here, we cover the structure, working mechanisms, and electrical responses of EGOSTs. We then focus on strategies to ensure their stability to maintain these characteristics and prevent adverse effects on biological tissues. We also highlight state-of-the-art neuromorphic implants that incorporate these strategies. We conclude by presenting a perspective on improvements that are needed in EGOSTs to develop practical, neuromorphic implants that are long-term useable.


Assuntos
Técnicas Biossensoriais , Eletrólitos , Transistores Eletrônicos , Humanos , Técnicas Biossensoriais/instrumentação , Eletrólitos/química , Próteses e Implantes , Desenho de Equipamento , Plasticidade Neuronal , Sinapses/fisiologia , Animais
2.
MethodsX ; 6: 1379-1383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431895

RESUMO

[This corrects the article DOI: 10.1016/j.mex.2018.07.006.][This corrects the article DOI: 10.1016/j.scitotenv.2017.09.145.].

3.
MethodsX ; 5: 803-807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105213

RESUMO

Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982-2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer-Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research Unit Time Series) climate variable (temperature, rainfall, and potential evapotranspiration) time series. First, we estimated the overall trends for vegetation greenness and climate variables and analyzed trends during summer (April-October), winter (November-March), and the entire year. Second, we carried out correlation and regression analyses to detect correlations between vegetation greenness and climate variables. Our study revealed an increasing trend (0.05-0.28) in temperature in northeastern India (bordering Bhutan), Southeast Bhutan, Yunnan Province of China, Northern Myanmar, Central Cambodia, northern Laos, southern Vietnam, eastern Iran, southern Afghanistan, and southern Pakistan. However, a decreasing trend in temperature (0.00 to -0.04) was noted for specific areas in southern Asia including Central Myanmar and northwestern Thailand and the Guangxi, Southern Gansu, and Shandong provinces of China. The results also indicated an increasing trend for evapotranspiration and air temperature accompanied by a decreasing trend for vegetation greenness and rainfall. Increases in both the mean annual signal and annual cycle occurred in the forest, herbaceous, and cropland areas of India, Northwest China, and eastern Kazakhstan. The temperature was found to be the main driver of the changing vegetation greenness in Kazakhstan, northern Mongolia, Northeast and Central China, North Korea, South Korea, and northern Japan, showing an indirect relationship (R = 0.84-0.96). •Temperature is the main climatic variable affecting vegetation greenness.•A downward trend in vegetation greenness was observed during summer (April-October).•Temperature showed an upward trend across many areas of Asia during the study period.•In winter, rainfall showed downward and upward trends in different parts of Asia.

4.
Sci Total Environ ; 618: 1089-1095, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29100696

RESUMO

Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982-2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer - Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research Unit Time Series) climate variable (temperature, rainfall, and potential evapotranspiration) time series. First, we estimated the overall trends for vegetation greenness, climate variables and analyzed trends during summer (April to October), winter (November to March), and the entire year. Second, we carried out correlation and regression analyses to detect correlations between vegetation greenness and climate variables. Our study revealed an increasing trend (0.05 to 0.28) in temperature in northeastern India (bordering Bhutan), Southeast Bhutan, Yunnan Province of China, Northern Myanmar, Central Cambodia, northern Laos, southern Vietnam, eastern Iran, southern Afghanistan, and southern Pakistan. However, a decreasing trend in temperature (0.00 to -0.04) was noted for specific areas in southern Asia including Central Myanmar and northwestern Thailand and the Guangxi, Southern Gansu, and Shandong provinces of China. The results also indicated an increasing trend for evapotranspiration and air temperature accompanied by a decreasing trend for vegetation greenness and rainfall. The temperature was found to be the main driver of the changing vegetation greenness in Kazakhstan, northern Mongolia, Northeast and Central China, North Korea, South Korea, and northern Japan, showing an indirect relationship (R=0.84-0.96).


Assuntos
Clima , Monitoramento Ambiental , Plantas , Estações do Ano , Afeganistão , Camboja , China , Mudança Climática , Índia , Irã (Geográfico) , Japão , Laos , Mianmar , Paquistão , Transpiração Vegetal , Chuva , República da Coreia , Imagens de Satélites , Temperatura , Tailândia , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA