Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 142(1): 283-289, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31794219

RESUMO

In this report, we merge block copolymers with vitrimers in an effort to realize the prospect of higher-order, nanoscale control over associative cross-link exchange and flow. We show the use of controlled polymerization as a vital tool to understand fundamental structure-property effects through the precise control of polymer architecture and molecular weight. Vitrimers derived from self-assembling block copolymers exhibit superior resistance to macroscopic deformation in comparison to their analogs generated from statistical copolymers. Our results suggest that the enhanced creep resistance achieved by control over chain topology in block vitrimers can be used to tune viscoelastic properties. The resistance to macroscopic deformation that arises from a microphase-separated structure in this new class of materials differentiates block vitrimers from their statistical counterparts and introduces the potential of topology-control over viscoelastic flow.


Assuntos
Polímeros/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Elasticidade , Fenômenos Mecânicos , Microscopia de Força Atômica , Peso Molecular , Polimerização , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Viscosidade , Difração de Raios X
2.
Soft Matter ; 12(31): 6507-11, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27445116

RESUMO

Folds, highly deformed structures, have received extensive attention for their nonlinear responses due to a large strain on soft matters. To investigate the folding phenomena, here, we exploit residual tensile stress during metal deposition, which is large enough to compress a thin film coating and introduce a photocurable viscous fluid to decrease the resistance of the substrate against compressive stress. The system has the advantages of the abilities for freezing the highly deformed surfaces by post-UV exposure to the UV-crosslinkable substrate and manipulating the substrate effect by controlling the thickness of the substrate. We theoretically investigated the dependence on the substrate thickness using scaling analysis and demonstrated self-generated ladder and flower-like graphoepitaxial structures originated from the thickness design of the viscous substrate.

3.
Nat Commun ; 15(1): 1211, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332010

RESUMO

Recent studies of electronic nose system tend to waste significant amount of important data in odor identification. Until now, the sensitivity-oriented data composition has made it difficult to discover meaningful data to apply artificial intelligence in terms of in-depth analysis for odor attributes specifying the identities of gas molecules, ultimately resulting in hindering the advancement of the artificial olfactory technology. Here, we realize a data-centric approach to implement standardized artificial olfactory systems inspired by human olfactory mechanisms by formally defining and utilizing the concept of Eigengraph in electrochemisty. The implicit odor attributes of the eigengraphs were mathematically substantialized as the Fourier transform-based Mel-Frequency Cepstral Coefficient feature vectors. Their effectiveness and applicability in deep learning processes for gas classification have been clearly demonstrated through experiments on complex mixed gases and automobile exhaust gases. We suggest that our findings can be widely applied as source technologies to develop standardized artificial olfactory systems.


Assuntos
Inteligência Artificial , Olfato , Humanos , Odorantes , Tecnologia , Gases
4.
Microsyst Nanoeng ; 9: 28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949735

RESUMO

This study presents a new technology that can detect and discriminate individual chemical vapors to determine the chemical vapor composition of mixed chemical composition in situ based on a multiplexed DNA-functionalized graphene (MDFG) nanoelectrode without the need to condense the original vapor or target dilution. To the best of our knowledge, our artificial intelligence (AI)-operated arrayed electrodes were capable of identifying the compositions of mixed chemical gases with a mixed ratio in the early stage. This innovative technology comprised an optimized combination of nanodeposited arrayed electrodes and artificial intelligence techniques with advanced sensing capabilities that could operate within biological limits, resulting in the verification of mixed vapor chemical components. Highly selective sensors that are tolerant to high humidity levels provide a target for "breath chemovapor fingerprinting" for the early diagnosis of diseases. The feature selection analysis achieved recognition rates of 99% and above under low-humidity conditions and 98% and above under humid conditions for mixed chemical compositions. The 1D convolutional neural network analysis performed better, discriminating the compositional state of chemical vapor under low- and high-humidity conditions almost perfectly. This study provides a basis for the use of a multiplexed DNA-functionalized graphene gas sensor array and artificial intelligence-based discrimination of chemical vapor compositions in breath analysis applications.

5.
Macromol Rapid Commun ; 33(23): 2035-40, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22991077

RESUMO

A strategy to fabricate nanostructured poly(3-hexylthiophene) (P3HT) films for organic photovoltaic (OPV) cells by a direct transfer method from a reusable soft replica mold is presented. The flexible polyfluoropolyether (PFPE) replica mold allows low-pressure and low- temperature process condition for the successful transfer of nanostructured P3HT films onto PEDOT/PSS-coated ITO substrates. To reduce the fabrication cost of masters in large area, we employed well-ordered anodic aluminum oxide (AAO) as a template. Also, we provide a method to fabricate reversed nanostructures by exploiting the self-replication of replica molds. The concept of the transfer method in low temperature with a flexible and reusable replica mold obtained from an AAO template will be a firm foundation for a low-cost fabrication process of ordered OPVs.


Assuntos
Nanoestruturas/química , Tiofenos/química , Óxido de Alumínio/química , Eletrodos , Desenho de Equipamento , Teste de Materiais , Fotoquímica
6.
Langmuir ; 27(12): 7944-8, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21619023

RESUMO

We present the mold design rules for assuring residual layer-free patterning in thermal imprint processes. Using simple relations for mass balance, structural stability, and work of adhesion, we derive the conditions with respect to the given single or multigeometrical feature of the mold, which are compared with simple thermal imprint experiments using soft imprint molds. Our analysis could serve as a guideline for designing the optimum mold geometry and selecting mold material in residual layer-free thermal imprint processes.

7.
J Ethnopharmacol ; 279: 114349, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34171398

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saussurea costus (synonym: Aucklandia lappa Decne) is a medicinal plant distributed in Yunnan, Guangxi, and Sichuan in China. In traditional Korean medicine, the plant parts (especially the root-"radix aucklandiae") is widely used to treat vomiting, diarrhea, and inflammation. However, little has been reported on its effect on benign prostatic hyperplasia (BPH), which is common in middle-aged men. AIM OF THE STUDY: BPH is caused by apoptosis imbalance and inflammation due to aging of the prostate. Therefore, the aim of this was to prove the efficacy of S. costus by analyzing its effect on the biological mechanisms leading to BPH progression. MATERIALS AND METHODS: Wistar rats were injected subcutaneously with a single dose of testosterone (125 mg/kg) to induce BPH, and were later administered with S. costus (20, 40 mg/kg). After 12 weeks, histological changes in the prostate and hormone regulation factors were assessed in all animals. Furthermore, apoptotic protein and apoptotic body values were analyzed to confirm the improvement of apoptosis imbalance, and inflammatory cytokines were analyzed to confirm the anti-inflammatory efficacy of S. costus. RESULTS: In the serum and tissue of S. costus-treated BPH rats, a significant reduction in prostate weight, prostate index, and hormone regulation factors was observed. S. costus also increased the levels of apoptosis marker proteins and reduced the levels of inflammatory cytokines. It also decreased the expression of B-cell lymphoma 2 (BCL-2) and increased the expression of BCL-2 associated X protein (BAX) in the prostate. Histological changes such as epithelial thickness significantly increased in BPH induced group but significantly decreased in the S. costus-treated groups (p < 0.001). CONCLUSIONS: S. costus may prevent and treat BPH occurrence by modulating inflammation and apoptosis imbalance.


Assuntos
Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Hiperplasia Prostática/tratamento farmacológico , Saussurea/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Extratos Vegetais/administração & dosagem , Hiperplasia Prostática/patologia , Ratos , Ratos Wistar
8.
Macromolecules ; 52(24)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33060868

RESUMO

The optimization of ionic conductivity and lithium-ion battery stability can be achieved by independently tuning the ion transport and mechanical robustness of block polymer (BP) electrolytes. However, the ionic conductivity of BP electrolytes is inherently limited by the covalent attachment of the ionically conductive block to the mechanically robust block, among other factors. Herein, the BP electrolyte polystyrene-block-poly(oligo-oxyethylene methacrylate) [PS-b-POEM] was blended with POEM homopolymers of varying molecular weights. The incorporation of a higher molecular weight homopolymer additive (α > 1 state) promoted a "dry brush-like" homopolymer distribution within the BP self-assembly and led to higher lithium salt concentrations in the more mobile homopolymer-rich region, increasing overall ionic conductivity relative to the "wet brush-like" (α < 1 state) and unblended composites, where α is the molecular weight ratio between the POEM homopolymer and the POEM block in the copolymer. Neutron and X-ray reflectometry (NR and XRR, respectively) provided additional details on the lithium salt and polymer distributions. From XRR, the α > 1 blends showed increased interfacial widths in comparison to their BP (unblended) or α < 1 counterparts because of the more central distribution of the homopolymer. This result, paired with NR data that suggested even salt concentrations across the POEM domains, implied that there was a higher salt concentration in the homopolymer POEM-rich regions in the dry brush blend than in the wet brush blend. Furthermore, using 7Li solid-state nuclear magnetic resonance spectroscopy, we found a temperature corresponding to a transition in lithium mobility (T Li mobility) that was a function of blend type. T Li mobility was found to be 39 °C above T g in all cases. Interestingly, the ionic conductivity of the blended BPs was highest in the α > 1 composites, even though these composites had higher T gs than the α < 1 composites, demonstrating that homopolymer-rich conducting pathways formed in the α > 1 assemblies had a larger influence on conductivity than the greater lithium ion mobility in the α < 1 blends.

9.
Science ; 359(6382): 1391-1395, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29567710

RESUMO

Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

12.
ACS Nano ; 10(4): 4062-71, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26972782

RESUMO

Electrostatic force microscopy (EFM) is often used for nanoscale dielectric spectroscopy, the measurement of local dielectric properties of materials as a function of frequency. However, the frequency range of atomic force microscopy (AFM)-based dielectric spectroscopy has been limited to a few kilohertz by the resonance frequency and noise of soft microcantilevers used for this purpose. Here, we boost the frequency range of local dielectric spectroscopy by 3 orders of magnitude from a few kilohertz to a few megahertz by developing a technique that exploits the high resonance frequency and low thermal noise of ultrasmall cantilevers (USCs). We map the frequency response of the real and imaginary components of the capacitance gradient (∂C(ω)/∂z) by using second-harmonic EFM and a theoretical model, which relates cantilever dynamics to the complex dielectric constant. We demonstrate the method by mapping the nanoscale dielectric spectrum of polymer-based materials for organic electronic devices. Beyond offering a powerful extension to AFM-based dielectric spectroscopy, the approach also allows the identification of electrostatic excitation frequencies which affords high dielectric contrast on nanomaterials.

13.
ACS Macro Lett ; 4(3): 293-297, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35596336

RESUMO

In polymer-based ferroelectric diodes, films are composed of a semiconducting polymer and a ferroelectric polymer blend sandwiched between two metal electrodes. In these thin films, the ferroelectric phase serves as the memory retention medium while the semiconducting phase serves as the pathway to read-out the memory in a nondestructive manner. As such, having distinct phases for the semiconducting and ferroelectric phases have proven critical to device performance. In order to evaluate this crucial structure-property relationship, we have fabricated ordered ferroelectric devices (OFeDs) through common lithographic techniques to establish systematically the impact of nanoscale structure on the macroscopic performance. In particular, we demonstrate that there is an optimal domain size (∼400 nm) for the interpenetrating networks, and we show that the ordered device, with semiconducting domains that span the entire length of the active layer film, provides a significant increase in the ON/OFF ratio relative to the blended film fabricated using standard solution blending and spin-coating techniques. This improved performance occurs due to a combination of the ordered nanostructure and the nature of the ferroelectric-semiconductor interface. As this is the first demonstration of macroscopic OFeDs, this work helps to elucidate the underlying physics of the device operation and establishes a new archetype in the design of polymer-based, nonvolatile memory devices.

14.
Arch Pharm Res ; 37(5): 645-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24272890

RESUMO

Adiponectin is an adipocyte hormone involved in glucose and lipid metabolism. The aim of this study was to develop a human adiponectin expression system in transgenic silkworm using a human adiponectin expression vector. The silk gland of the silkworm is a highly specialized organ that has the wonderful ability to synthesize and secrete silk protein. To express human adiponectin in the silk gland of transgenic silkworm, targeting vectors pB-A3-adiponectin-IRES-RFP and pB-Ser1-adiponectin-IRES-RFP were constructed and then introduced into the silkworm pupa. The transgenic silkworms were verified by PCR and then generated. The level of adiponectin in the transgenic silkworm was 6-10 ng/50 mg of freeze-dried powder, and western blotting using an antibody against human adiponectin demonstrated a specific band with a molecular weight of 30 kDa in the silkworm. These results showed that human adiponectin introduced into the silkworm genome was expressed successfully on a large-scale.


Assuntos
Adiponectina/biossíntese , Bombyx/metabolismo , Vetores Genéticos , Adiponectina/química , Adiponectina/genética , Animais , Animais Geneticamente Modificados , Western Blotting , Bombyx/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Humanos , Peso Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA