Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Hypertens ; 43(1): 91-100, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909857

RESUMO

Vitamin D modulates about 3% human gene transcription besides the classical action on calcium/phosphorus homeostasis. The blood pressure-lowing and other protective action on cardiovascular disease have been reported. The present study aims to examine whether COX-1 and COX-2 were implicated in endothelial dysfunction in hypertension and calcitriol, an active form of vitamin D preserved endothelial function through regulating COX expression. Isometric study demonstrated the impaired endothelium-dependent relaxation (EDR) in renal arteries from spontaneously hypertensive rats were reversed by 12 h-calcitriol treatment and COX-1 and COX-2 inhibitors. Combined uses of COX-1 and COX-2 inhibitor induced more improved relaxations. Exaggerated expressions of COX-1 and COX-2 in renal artery from SHR were inhibited by 12 h-administration of calcitriol, NADPH oxidase inhibitor DPI, or reactive oxygen species (ROS) scavenger tempol. Furthermore, in normotensive WKY rats, calcitriol prevents against the blunted EDR in renal arteries by 12 h-Ang II exposure, with similar improvements by COX-1 and COX-2 inhibitors. Accordingly, increased COX-1 and COX-2 expressions by Ang II exposure were corrected by losartan, DPI, or tempol. Studies on human renal artery also revealed the beneficial action of calcitriol is mediated by suppressing COX-1 and COX-2 expressions, dependent on vitamin D receptor (VDR) activation. Taken together, our findings showed that COX-1 and COX-2 are positively involved in the renovascular dysfunction in hypertension and via VDR, calcitriol benefits renovasular function by suppressing COX-1 and COX-2 expressions. Furthermore, ROS is involved in the COX-1 and COX-2 up-regulations of renal arteries, maybe serving as a mediator in the inhibitory action of calcitriol on COX expression.


Assuntos
Calcitriol/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hipertensão/enzimologia , Artéria Renal/enzimologia , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Losartan/farmacologia , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Receptores de Calcitriol/metabolismo , Marcadores de Spin , Vasodilatação/efeitos dos fármacos
2.
Heliyon ; 10(6): e27623, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524538

RESUMO

Background: The reciprocal nexus between sleep and pain is well-documented, with the deleterious impact of operative trauma potentially playing a pivotal role in the dysregulation of this interplay, which could significantly contribute to the manifestation of postoperative delirium (POD). Studies have investigated the effect of adding dexmedetomidine (DEX) to patient-controlled intravenous analgesia (PCIA) pumps on postoperative pain-sleep interaction cycle and POD, but conclusions remained uncertain. The objective of this investigation is to perform a meta-analysis that thoroughly assesses the impact of integrating DEX into PCIA, focusing on analgesic effectiveness, sleep quality, and the incidence of delirium in postoperative patients. Methods: PubMed, Embase, Cochrane Library, SinoMed, and Wanfang Data Knowledge Service Platform were searched, for publications in any language, from database inception to September 2023. Our analysis encompassed randomized controlled trials (RCTs) that examine the therapeutic efficacy and risk profile of adding DEX to the PCIA on the postoperative pain-sleep interaction cycle, by focusing on changes in postoperative analgesia (Visual analog scale (VAS) score), sleep efficiency, sleep structure, subjective sleep score (Assen insomnia scale and numerical rating scale) and adverse event rate. Results: 34 RCTs (4324 patients) were analyzed. This study shows DEX improved analgesia and reduced VAS scores at 6, 12, and 24 h after surgery. Sleep efficiency was enhanced on the 1st and 2nd postoperative night. DEX improved sleep structure at the 1st postoperative night by reducing non-rapid eye movement stage 1 (N1) sleep and increasing non-rapid eye movement stage 2 (N2) and non-rapid eye movement stage 3 (N3) sleep. At the 2nd night, DEX reduced N1 sleep and increased N2 sleep, but not N3 sleep. Data from AIS and NRS showed improvement in subjective sleep scores on the 1st postoperative night and 2nd night. Additionally, DEX decreased the occurrence of POD on the 24 h and first-three days. Conclusion: This study shows that the typical DEX doses added to PCIA with sufentanil were 2-5 µg/kg or approximately 200-250 µg, and the addition of DEX to PCIA can improve pain-sleep interaction cycle from multiple perspectives, and further decrease the occurrence of POD.

3.
Front Med (Lausanne) ; 10: 1158085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153107

RESUMO

Background: Dexmedetomidine (DEX) is a sedative with greater preservation of cognitive function, reduced respiratory depression, and improved patient arousability. This study was designed to investigate the performance of DEX during anesthesia induction and to establish an effective DEX induction strategy, which could be valuable for multiple clinical conditions. Methods: Patients undergoing abdominal surgery were involved in this dose-finding trial. Dixon's up-and-down sequential method was employed to determine the effective dose of DEX to achieve the state of "loss of consciousness", and an effective induction strategy was established with continuous infusion of DEX and remifentanil. The effects of DEX on hemodynamics, respiratory state, EEG, and anesthetic depth were monitored and analyzed. Results: Through the strategy mentioned, the depth of surgical anesthesia was successfully achieved by DEX-led anesthesia induction. The ED50 and ED95 of the initial infusion rate of DEX were 0.115 and 0.200 µg/kg/min, respectively, and the mean induction time was 18.3 min. The ED50 and ED95 of DEX to achieve the state of "loss of consciousness" were 2.899 (95% CI: 2.703-3.115) and 5.001 (95% CI: 4.544-5.700) µg/kg, respectively. The mean PSI on the loss of consciousness was 42.8 among the patients. During anesthesia induction, the hemodynamics including BP and HR were stable, and the EEG monitor showed decreased α and ß powers and increased θ and δ in the frontal and pre-frontal cortices of the brain. Conclusion: This study indicated that continuous infusion of combined DEX and remifentanil could be an effective strategy for anesthesia induction. The EEG during the induction was similar to the physiological sleep process.

4.
Front Aging Neurosci ; 15: 1098510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051377

RESUMO

Circular RNAs are highly stable single-stranded circular RNAs and enriched in the brain. Previous studies showed that circRNAs, as part of competing endogenous RNAs (ceRNAs) network, play an important role in neurodegenerative and psychiatric diseases. However, the mechanism of circRNA-related ceRNA networks in postoperative cognitive dysfunction (POCD) has not been elucidated yet. POCD usually occurs in elderly patients and is characterized by hippocampal dysfunction. Here, aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia, and this POCD model was verified by Morris water maze test. Whole-transcriptome sequencing was performed on the hippocampus of control group (Con) and surgery group. One hundred and seventy-seven DEcircRNAs, 221 DEmiRNAs and 2,052 DEmRNAs were identified between two groups. A ceRNA network was established with 92 DEcircRNAs having binding sites with 76 DEmiRNAs and 549 target DEmRNAs. In functional enrichment analysis, a pathological pattern of POCD was highlighted in the ceRNA network: Abnormal metabolic process in neural cells, including oxygen metabolism, could promote apoptosis and then affect the synaptic function, which may undermine the neural plasticity and eventually lead to changes in cognitive function and other behavioral patterns. In conclusion, this specific ceRNA network of circRNAs-miRNAs-mRNAs has provided novel insights into the regulatory mechanisms of POCD and revealed potential therapeutic gene targets.

5.
CNS Neurosci Ther ; 28(10): 1576-1595, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899365

RESUMO

AIM: Perioperative neurocognitive disorders (PND) occur frequently after surgery and anesthesia, especially in aged patients. Previous studies have shown multiple PND related mechanisms in the hippocampus; however, their relationships remain unclear. Meanwhile, the perioperative neuropathological processes are sophisticated and changeable, single period study could not reveal the accurate mechanisms. Thus, multiperiod whole-transcriptome study is necessary to elucidate the gene expression patterns during perioperative period. METHODS: Aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia. Whole-transcriptome sequencing (RNA-seq analysis) was performed on the hippocampi from control condition (Con), 30 min (Day0), 2 days (Day2), and 7 days (Day7) after surgery. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses, quantitative real-time PCR, immunofluorescence, and fear conditioning test were also performed to elucidate the pathological processes and modulation networks during the period. RESULTS: Through RNA-seq analysis, 328, 3597, and 4179 differentially expressed genes (DEGs) were screened out in intraoperative period (Day0 vs. Con), early postoperative period (Day2 vs. Day0), and late postoperative period (Day7 vs. Day2). The involved GO biological processes were divided into 9 categories, and positive-regulated processes were more than negative-regulated ones. Seventy-four transcription factors were highlighted. The potential synaptic and neuroinflammatory pathways were constructed for Neurotransmitter, Synapse and Neuronal alteration categories with 9 genes (Htr1a, Rims1, and Ezh2, etc.). The metabolic and mitochondrial pathways were constructed for metabolism, oxidative stress, and biological rhythm categories with 9 genes (Gpld1, Sirt1, and Cry2, etc.). The blood-brain barrier and neurotoxicity related pathways were constructed for blood-brain barrier, neurotoxicity, and cognitive function categories with 10 genes (Mmp2, Itpr1, and Nrf1, etc.). CONCLUSION: The results revealed gene expression patterns and modulation networks in the aged hippocampus during perioperative period, which provide insights into overall mechanisms and potential therapeutic targets for prevention and treatment of perioperative central nervous system diseases, such as PND, from the genetic level.


Assuntos
Barreira Hematoencefálica , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Período Perioperatório
6.
Front Oncol ; 12: 970557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185178

RESUMO

Perioperative immune function, postoperative cognitive function and prognosis are momentous issues for patients undergoing digestive tract cancer surgery. Studies have investigated the efficacy of dexmedetomidine (DEX) administration on these issues, but the results are inconsistent. Therefore, this meta-analysis aimed to summarize all the existing evidence and draw a conclusion more accurately on these associations. Trials were located through electronic searches of the PubMed, Embase, the Cochrane Library and Web of Science databases sources (from the establishment date of databases to April 2022). Bibliographies of the retrieved articles were checked. A total of 17 RCTs involving 1619 patients were included. The results showed that DEX decreased the level of C-reactive protein (SMD = -4.26, 95%CI: -6.16, -2.36), TNF-α (SMD = -4.22, 95%CI: -5.91, -2.54) and IL-6 (SMD = -2.71, 95%CI: -4.46, -0.97), and increased the level of IL-10 (SMD = 1.74, 95%CI: 0.25, 3.24). DEX also increased CD4+ T cells (SMD = 0.55, 95%CI: 0.29, 0.82) and CD4+/CD8+ ratio (SMD = 0.62, 95%CI: 0.24, 1.01). Thus, DEX was associated with alleviation of postoperative systemic inflammatory response and immune dysfunction. Furthermore, DEX increased mini-mental state examination scores at 12h (SMD = 1.10, 95%CI: 0.74,1.45), 24h (SMD = 0.85, 95%CI: 0.59, 1.11), 48h (SMD = 0.89, 95%CI: 0.50, 1.28) and 72h (SMD = 0.75, 95%CI: 0.38, 1.11) after surgery. DEX decreased the occurrence of postoperative cognitive dysfunction (POCD) at 24h (OR = 0.22, 95%CI: 0.11, 0.46) and 72h (OR = 0.39, 95%CI: 0.22, 0.68) after surgery. DEX decreased first flatus time (SMD = -1.55, 95%CI: -2.82, -0.27) and hospital stay (SMD = -1.23, 95%CI: -1.88, -0.59). Therefore, based on perioperative immune dysfunction alleviation, DEX attenuated POCD and potential neuroinflammation, improved postoperative recovery and clinical prognosis of patients undergoing digest tract cancer surgery. Further studies are necessary to elucidate the clinical application of DEX from an immunological perspective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA