RESUMO
(Hetero)biaryls are fundamental building blocks in the pharmaceutical industry and rapid access to these scaffolds is imperative for the success of numerous medicinal chemistry campaigns. Herein, a highly general, mild, and chemoselective reductive cross-electrophile coupling between (hetero)aryl iodides and heteroaryl bromides is reported. By employing more reactive (hetero)aryl halides, a broad range of successful substrates (45 examples) were identified. The reaction was also found to be chemoselective for C(sp2)-C(sp2) bond formation between (hetero)aryl iodides and bromides over (hetero)aryl chlorides, which were generally inert under the described reaction conditions. The efficiency of the procedure is also further demonstrated in parallel synthesis library format, on gram scale, as well as in the formal synthesis of Ruxolitinib, a potent JAK inhibitor. As such, we anticipate this method will find widespread utility in the assembly of (hetero)biaryls for medicinal chemistry efforts.
RESUMO
Werner syndrome protein (WRN) is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers characterized by genomic microsatellite instability resulting from defects in DNA mismatch repair pathways. WRN's helicase activity is essential for the viability of these high microsatellite instability (MSI-H) cancers and thus presents a therapeutic opportunity. To this end, we developed a multiplexed high-throughput screening assay that monitors exonuclease, ATPase, and helicase activities of full-length WRN. This screening campaign led to the discovery of 2-sulfonyl/sulfonamide pyrimidine derivatives as novel covalent inhibitors of WRN helicase activity. The compounds are specific for WRN versus other human RecQ family members and show competitive behavior with ATP. Examination of these novel chemical probes established the sulfonamide NH group as a key driver of compound potency. One of the leading compounds, H3B-960, showed consistent activities in a range of assays (IC50 = 22 nM, KD = 40 nM, KI = 32 nM), and the most potent compound identified, H3B-968, has inhibitory activity IC50 â¼ 10 nM. These kinetic properties trend toward other known covalent druglike molecules. Our work provides a new avenue for screening WRN for inhibitors that may be adaptable to different therapeutic modalities such as targeted protein degradation, as well as a proof of concept for the inhibition of WRN helicase activity by covalent molecules.
Assuntos
Neoplasias , Síndrome de Werner , Humanos , Exodesoxirribonucleases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Ensaios de Triagem em Larga Escala , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/metabolismoRESUMO
A direct, stereocontrolled synthesis of acyclic α-chloroenamides is presented. Our methodology showed good yields and substrate scope. Mechanistic insights are provided that account for the high levels of stereoselectivity reported. Subsequent synthetic manipulation of the α-chloroenamides provides direct entry to polyfunctionalized acyclic enamides, compounds of wide use in organic chemistry and the pharmaceutical industry.
RESUMO
Heterobiaryl compounds that exhibit axial chirality are of increasing value and interest across several fields, but direct oxidative methods for their enantioselective synthesis remain elusive. Here we disclose that an iron catalyst in the presence of a chiral PyBOX ligand and an oxidant enables direct coupling between naphthols and indoles to yield atropisomeric heterobiaryl compounds with high levels of enantioselectivity. The reaction exhibits remarkable chemoselectivity and exclusively yields cross-coupled products without competing homocoupling. Mechanistic investigations enable us to postulate that an indole radical is generated in the reaction but that this is probably an off-cycle event, and that the reaction proceeds through formation of a chiral Fe-bound naphthoxy radical that is trapped by a nucleophilic indole. We envision that this simple, cheap and sustainable catalytic manifold will facilitate access to a range of heterobiaryl compounds and enable their application across the fields of materials science, medicinal chemistry and catalysis.
RESUMO
The isolation and total synthesis of the antimicrobial lipopeptide cerexin A1 is reported. This synthesis includes the preparation of orthogonally protected γ-hydroxylysine, utilizing a nitrile Reformatsky-type reaction as a key step to yield both diastereomers more efficiently than previously reported methods. The configuration of the ß-hydroxyl in the lipid tail was determined by the use of a modified Ohrui-Akasaka approach. Furthermore, new cerexin analogues from Bacillus mycoides ATCC 21929 were isolated and characterized, revealing an ε-amino succinylation of a hydroxylysine residue that is unusual in a nonribosomal peptide synthetase product.