Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Psychiatry ; 28(8): 3512-3523, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532798

RESUMO

Sensitive developmental periods shape neural circuits and enable adaptation. However, they also engender vulnerability to factors that can perturb developmental trajectories. An understanding of sensitive period phenomena and mechanisms separate from sensory system development is still lacking, yet critical to understanding disease etiology and risk. The dopamine system is pivotal in controlling and shaping adolescent behaviors, and it undergoes heightened plasticity during that time, such that interference with dopamine signaling can have long-lasting behavioral consequences. Here we sought to gain mechanistic insight into this dopamine-sensitive period and its impact on behavior. In mice, dopamine transporter (DAT) blockade from postnatal (P) day 22 to 41 increases aggression and sensitivity to amphetamine (AMPH) behavioral stimulation in adulthood. Here, we refined this sensitive window to P32-41 and identified increased firing of dopaminergic neurons in vitro and in vivo as a neural correlate to altered adult behavior. Aggression can result from enhanced impulsivity and cognitive dysfunction, and dopamine regulates working memory and motivated behavior. Hence, we assessed these behavioral domains and found that P32-41 DAT blockade increases impulsivity but has no effect on cognition, working memory, or motivation in adulthood. Lastly, using optogenetics to drive dopamine neurons, we find that increased VTA but not SNc dopaminergic activity mimics the increase in impulsive behavior in the Go/NoGo task observed after adolescent DAT blockade. Together our data provide insight into the developmental origins of aggression and impulsivity that may ultimately improve diagnosis, prevention, and treatment strategies for related neuropsychiatric disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Camundongos , Animais , Anfetamina/farmacologia , Comportamento Impulsivo/fisiologia , Agressão
2.
Mol Psychiatry ; 25(12): 3304-3321, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120415

RESUMO

Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.


Assuntos
Receptor 5-HT2C de Serotonina , Inibidores Seletivos de Recaptação de Serotonina , Animais , Gânglios da Base , Dopamina , Camundongos , Serotonina , Substância Negra
3.
Dev Psychobiol ; 58(2): 198-210, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26395029

RESUMO

Early stress has been hypothesized to recruit epigenetic mechanisms to mediate persistent molecular, cellular, and behavioral changes. Here, we have examined the consequence of the early life stress of maternal separation (ES) on the gene expression of several histone modifiers that regulate histone acetylation and methylation within the medial prefrontal cortex (mPFC), a key limbic brain region that regulates stress responses and mood-related behavior. ES animals exhibit gene regulation of both writer (histone acetyltransferases and histone methyltransferases) and eraser (histone deacetylases and histone lysine demethylases) classes of histone modifiers. While specific histone modifiers (Kat2a, Smyd3, and Suv420h1) and the sirtuin, Sirt4 were downregulated across life within the mPFC of ES animals, namely at postnatal Day 21, 2 months, and 15 months of age, we also observed gene regulation restricted to these specific time points. Despite the decline noted in expression of several histone modifiers within the mPFC following ES, this was not accompanied by any change in global or residue-specific H3 acetylation and methylation. Our findings indicate that ES results in the regulation of several histone modifiers within the mPFC across life, and suggest that such perturbations may contribute to the altered prefrontal structural and functional plasticity observed following early adversity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Histona-Lisina N-Metiltransferase/genética , Privação Materna , Córtex Pré-Frontal/metabolismo , Sirtuínas/genética , Estresse Psicológico/genética , Acetilação , Animais , Western Blotting , Regulação para Baixo , Epigênese Genética , Histona Acetiltransferases/metabolismo , Código das Histonas/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Metilação , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuínas/metabolismo , Estresse Psicológico/metabolismo
4.
Rev Neurosci ; 26(4): 415-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915080

RESUMO

Exposure to stressors elicits a spectrum of responses that span from potentially adaptive to maladaptive consequences at the structural, cellular and physiological level. These responses are particularly pronounced in the hippocampus where they also appear to influence hippocampal-dependent cognitive function and emotionality. The factors that influence the nature of stress-evoked consequences include the chronicity, severity, predictability and controllability of the stressors. In addition to adult-onset stress, early life stress also elicits a wide range of structural and functional responses, which often exhibit life-long persistence. However, the outcome of early stress exposure is often contingent on the environment experienced in adulthood, and could either aid in stress coping or could serve to enhance susceptibility to the negative consequences of adult stress. This review comprehensively examines the consequences of adult and early life stressors on the hippocampus, with a focus on their effects on neurogenesis, neuronal survival, structural and synaptic plasticity and hippocampal-dependent behaviors. Further, we discuss potential factors that may tip stress-evoked consequences from being potentially adaptive to largely maladaptive.


Assuntos
Adaptação Fisiológica , Hipocampo/patologia , Estresse Fisiológico/fisiologia , Animais , Humanos , Plasticidade Neuronal , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
5.
Int J Neuropsychopharmacol ; 17(2): 289-301, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24025219

RESUMO

The early stress of maternal separation (ES) exerts long-lasting effects on cognition and anxiety. Recent evidence indicates enhanced hippocampus-dependent spatial learning in young adult ES animals, which shifts towards a decline in long-term memory in middle-aged life. Further, we find that ES animals exhibit enhanced anxiety in young adulthood that does not persist into middle-aged life. Here, we demonstrate unique, predominantly non-overlapping, hippocampal transcriptomes in young adult and middle-aged ES animals that accompany the temporally-specific behavioural consequences. Strikingly, the extent of gene dysregulation in middle-aged ES animals was substantially higher than in young adulthood. Functional analysis revealed distinct biological processes enriched at the two ages, highlighting the temporal shift in ES-evoked gene regulation. Our results suggest that ES history interacts with aging to exacerbate age-associated transcriptional changes and cognitive decline. qPCR profiling of histone deacetylases (Hdacs) and histone methyltransferases (HMTs) revealed an age-dependent, opposing regulation with decreased expression noted in young adult ES animals (Hdac 2, 7, 8, 9 and Suv39h1) and enhanced levels in middle-aged life (Hdac 2, 6, 8 and Suv39h1). While altered expression of histone modifying enzymes did not translate into global histone acetylation or methylation changes, we noted differential enrichment of histone acetylation and methylation modifications at the promoters of multiple genes regulated in the hippocampi of young adult and middle-aged ES animals. Our results highlight the differential molecular and behavioural consequences of ES across a life-span, and suggest a possible role for epigenetic mechanisms in contributing to the temporally-specific transcriptional changes following ES.


Assuntos
Ansiedade/metabolismo , Transtornos Cognitivos/metabolismo , Hipocampo/metabolismo , Privação Materna , Estresse Psicológico/metabolismo , Transcriptoma/fisiologia , Fatores Etários , Animais , Ansiedade/psicologia , Transtornos Cognitivos/psicologia , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Gravidez , Distribuição Aleatória , Ratos Sprague-Dawley , Estresse Psicológico/psicologia , Fatores de Tempo
6.
Int J Neuropsychopharmacol ; 16(2): 405-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22404904

RESUMO

Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity. We sought to examine whether trophic factor signalling through brain-derived neurotrophic factor (BDNF) contributes to the neocortical regulation of Arc mRNA in response to distinct stimuli such as immobilization stress and the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Acute exposure to either immobilization stress or DOI induced Arc mRNA levels within the neocortex. BDNF infusion into the neocortex led to a robust up-regulation of local Arc transcript expression. Further, baseline Arc mRNA expression in the neocortex was significantly decreased in inducible BDNF knockout mice with an adult-onset, forebrain specific BDNF loss. The induction of Arc mRNA levels in response to both acute immobilization stress or a single administration of DOI was significantly attenuated in the inducible BDNF knockout mice. Taken together, our results implicate trophic factor signalling through BDNF in the regulation of cortical Arc mRNA expression, both under baseline conditions and following stress and hallucinogen exposure. These findings suggest the possibility that the regulation of Arc expression via BDNF provides a molecular substrate for the structural and synaptic plasticity observed following stimuli such as stress and hallucinogens.


Assuntos
Anfetaminas/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Alucinógenos/farmacologia , Proteínas Musculares/metabolismo , Estresse Psicológico/metabolismo , Regulação para Cima/efeitos dos fármacos , Análise de Variância , Animais , Proteínas Reguladoras de Apoptose/genética , Infarto Encefálico/etiologia , Infarto Encefálico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/deficiência , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Regulação para Cima/genética
7.
Neuron ; 98(5): 992-1004.e4, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754752

RESUMO

The efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known. Here we applied optogenetic techniques in mice to gain insight into this fundamental biological process. We find that activation of serotonergic terminals in the hippocampal CA1 region both potentiates excitatory transmission at CA3-to-CA1 synapses and enhances spatial memory. Conversely, optogenetic silencing of CA1 5-HT terminals inhibits spatial memory. We furthermore find that synaptic potentiation is mediated by 5-HT4 receptors and that systemic modulation of 5-HT4 receptor function can bidirectionally impact memory formation. Collectively, these data reveal powerful modulatory influence of serotonergic synaptic input on hippocampal function and memory formation.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Memória Espacial/fisiologia , Animais , Axônios/metabolismo , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Hipocampo , Potenciação de Longa Duração , Memória , Camundongos , Inibição Neural/fisiologia , Optogenética , Serotonina/fisiologia , Transmissão Sináptica
8.
Birth Defects Res ; 109(12): 924-932, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714607

RESUMO

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system (CNS) development, such sensitive periods shape the formation of neuro-circuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint, as well as the environmental context. While allowing for adaptation, such sensitive periods are also windows of vulnerability during which external and internal factors can confer risk to brain disorders by derailing adaptive developmental programs. Our group has been particularly interested in developmental periods that are sensitive to serotonin (5-HT) signaling, and impact behavior and cognition relevant to psychiatry. Specifically, we review a 5-HT-sensitive period that impacts fronto-limbic system development, resulting in cognitive, anxiety, and depression-related behaviors. We discuss preclinical data to establish biological plausibility and mechanistic insights. We also summarize epidemiological findings that underscore the potential public health implications resulting from the current practice of prescribing 5-HT reuptake inhibiting antidepressants during pregnancy. These medications enter the fetal circulation, likely perturb 5-HT signaling in the brain, and may be affecting circuit maturation in ways that parallel our findings in the developing rodent brain. More research is needed to better disambiguate the dual effects of maternal symptoms on fetal and child development from the effects of 5-HT reuptake inhibitors on clinical outcomes in the offspring. Birth Defects Research 109:924-932, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores da Recaptação de Serotonina e Norepinefrina/efeitos adversos , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacocinética , Animais , Antidepressivos/farmacologia , Ansiedade/induzido quimicamente , Encéfalo/embriologia , Criança , Desenvolvimento Infantil/efeitos dos fármacos , Cognição/efeitos dos fármacos , Depressão/induzido quimicamente , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Resolução de Problemas/efeitos dos fármacos , Receptores 5-HT1 de Serotonina , Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
9.
Neuropsychopharmacology ; 40(1): 88-112, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25178408

RESUMO

Development passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context. While allowing for adaptation, such sensitive periods are also vulnerability windows during which external and internal factors can confer risk to disorders by derailing otherwise resilient developmental programs. Here we review developmental periods that are sensitive to monoamine signaling and impact adult behaviors of relevance to psychiatry. Specifically, we review (1) a serotonin-sensitive period that impacts sensory system development, (2) a serotonin-sensitive period that impacts cognition, anxiety- and depression-related behaviors, and (3) a dopamine- and serotonin-sensitive period affecting aggression, impulsivity and behavioral response to psychostimulants. We discuss preclinical data to provide mechanistic insight, as well as epidemiological and clinical data to point out translational relevance. The field of translational developmental neuroscience has progressed exponentially providing solid conceptual advances and unprecedented mechanistic insight. With such knowledge at hand and important methodological innovation ongoing, the field is poised for breakthroughs elucidating the developmental origins of neuropsychiatric disorders, and thus understanding pathophysiology. Such knowledge of sensitive periods that determine the developmental trajectory of complex behaviors is a necessary step towards improving prevention and treatment approaches for neuropsychiatric disorders.


Assuntos
Monoaminas Biogênicas/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cognição/fisiologia , Emoções/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Animais , Humanos
10.
Biol Psychiatry ; 76(4): 315-23, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24315552

RESUMO

BACKGROUND: The experience of early stress contributes to the etiology of several psychiatric disorders and can lead to lasting deficits in working memory and attention. These executive functions require activation of the prefrontal cortex (PFC) by muscarinic M1 acetylcholine (ACh) receptors. Such Gαq-protein coupled receptors trigger the release of calcium (Ca(2+)) from internal stores and elicit prolonged neuronal excitation. METHODS: In brain slices of rat PFC, we employed multiphoton imaging simultaneously with whole-cell electrophysiological recordings to examine potential interactions between ACh-induced Ca(2+) release and excitatory currents in adulthood, across postnatal development, and following the early stress of repeated maternal separation, a rodent model for depression. We also investigated developmental changes in related genes in these groups. RESULTS: Acetylcholine-induced Ca(2+) release potentiates ACh-elicited excitatory currents. In the healthy PFC, this potentiation of muscarinic excitation emerges in young adulthood, when executive function typically reaches maturity. However, the developmental consolidation of muscarinic ACh signaling is abolished in adults with a history of early stress, where ACh responses retain an adolescent phenotype. In prefrontal cortex, these rats show a disruption in the expression of multiple developmentally regulated genes associated with Gαq and Ca(2+) signaling. Pharmacologic and ionic manipulations reveal that the enhancement of muscarinic excitation in the healthy adult PFC arises via the electrogenic process of sodium/Ca(2+) exchange. CONCLUSIONS: This work illustrates a long-lasting disruption in ACh-mediated cortical excitation following early stress and raises the possibility that such cellular mechanisms may disrupt the maturation of executive function.


Assuntos
Acetilcolina/metabolismo , Cálcio/metabolismo , Privação Materna , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Depressão , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/crescimento & desenvolvimento , Células Piramidais/fisiopatologia , Distribuição Aleatória , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
11.
Biol Psychiatry ; 73(7): 658-66, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23237316

RESUMO

BACKGROUND: Adult-onset stressors exert opposing effects on hippocampal neurogenesis and cognition, with enhancement observed following mild stress and dysfunction following severe chronic stress. While early life stress evokes persistent changes in anxiety, it is unknown whether early stress differentially regulates hippocampal neurogenesis, trophic factor expression, and cognition across the life span. METHODS: Hippocampal-dependent cognitive behavior, neurogenesis, and epigenetic regulation of brain-derived neurotrophic factor (Bdnf) expression was examined at distinct time points across the life span in rats subjected to the early stress of maternal separation (ES) and control groups. We also examined the influence of chronic antidepressant treatment on the neurogenic, neurotrophic, and cognitive changes in middle-aged ES animals. RESULTS: Animals subjected to early stress of maternal separation examined during postnatal life and young adulthood exhibited enhanced hippocampal neurogenesis, decreased repressive histone methylation at the Bdnf IV promoter along with enhanced BDNF levels, and improved performance on the stress-associated Morris water maze. Strikingly, opposing changes in hippocampal neurogenesis and epigenetic regulation of Bdnf IV expression, concomitant with impairments on hippocampal-dependent cognitive tasks, were observed in middle-aged ES animals. Chronic antidepressant treatment with amitriptyline attenuated the maladaptive neurogenic, epigenetic, transcriptional, and cognitive effects in middle-aged ES animals. CONCLUSIONS: Our study provides novel insights into the short- and long-term consequences of ES, demonstrating both biphasic and unique, age-dependent changes at the molecular, epigenetic, neurogenic, and behavioral levels. These results indicate that early stress may transiently endow animals with a potential adaptive advantage in stressful environments but across a life span is associated with long-term deleterious effects.


Assuntos
Envelhecimento/fisiologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Cognição/fisiologia , Hipocampo/fisiologia , Privação Materna , Neurogênese/fisiologia , Amitriptilina/farmacologia , Animais , Animais Recém-Nascidos , Antidepressivos Tricíclicos/farmacologia , Cognição/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA