RESUMO
Per- and polyfluoroalkyl substances (PFAS) are manufactured chemicals that have been detected across the globe. Fluorotelomer alcohols (FTOHs) are one PFAS class commonly found in indoor air due to emissions from consumer products (e.g., textiles and food packaging) and are human metabolic, atmospheric oxidative, and industrial precursors of perfluoroalkyl carboxylic acids (PFCAs). We developed a quantitative method for real-time analysis of gas-phase FTOHs, perfluoroalkyl acids (PFCAs and GenX), one perfluorooctane sulfonamide (EtFOSA), one fluorotelomer diol (FTdiOH), and one fluorinated ether (E2) using high-resolution time-of-flight chemical ionization mass spectrometry equipped with iodide reagent ion chemistry (I-HR-ToF-CIMS). Herein, we present a direct liquid injection method for external calibration, providing detection limits of 0.19-3.1 pptv for 3 s averaging and 0.02-0.44 pptv for 120 s averaging, with the exception of E2, which had detection limits of 1700 and 220 pptv for 3- and 120 s averaging, respectively. These calibrations enabled real-time gas-phase quantification of 6 : 2 FTOH in room air while microwaving popcorn, with an average peak air concentration of 31.6 ± 4.5 pptv measured 2 meters from a closed microwave. Additionally, 8 : 2 and 10 : 2 FTOH concentrations in indoor air were measured in the presence and absence of a rain jacket, with observed peak concentrations of 110 and 25 pptv, respectively. Our work demonstrates the ability of I-HR-ToF-CIMS to provide real-time air measurements of PFAS relevant to indoor human exposure settings and allow for PFAS source identification. We expect that real-time quantification of other gas-phase PFAS classes is possible, enabling advances in understanding PFAS sources, chemistry, and partitioning.
RESUMO
The distribution and fate of per- and polyfluoroalkyl substances (PFAS) in homes are not well understood. To address this, we measured nine neutral PFAS in dust, airborne particles, dryer lint, and on heating and air conditioning (HAC) filters in 11 homes in North Carolina as part of the Indoor PFAS Assessment (IPA) Campaign and compared them with concurrently collected gas and cloth measurements. Fluorotelomer alcohols (FTOHs) contributed most (≥75%) to total (∑) measured neutral PFAS concentrations in dust, HAC filter, and dryer lint samples, with mean ∑(FTOH) concentrations of 207 ng/g, 549 ng/g, and 84 ng/g, respectively. In particles, perfluorooctane sulfonamidoethanols (FOSEs) dominated, with a mean ∑(FOSE) concentration of 0.28 ng/m3 or 75,467 ng/g. For FTOHs and FOSEs, resulting mean dust-air, HAC filter-air, dryer lint-air and particle-air partition coefficients in units of log(m3/µg) ranged (across species) from -5.1 to -3.6, -4.9 to -3.5, -5.4 to -4.1, and -3.2 to -0.78, respectively. We estimate that cloth, gas phase, and HAC filters are the largest reservoirs for FTOHs, while cloth, HAC filters, and dust are the largest reservoirs for FOSEs. Release rates of neutral PFAS from homes to the outdoor environment are reported.
Assuntos
Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , North Carolina , Poluentes Atmosféricos/análise , Poeira/análiseRESUMO
Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Carbono , Biomassa , Monitoramento Ambiental , Poluição do Ar/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análiseRESUMO
Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.
Assuntos
Aerossóis , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-BaseRESUMO
Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).
Assuntos
Butadienos , Estresse Oxidativo , Humanos , Idoso , Espécies Reativas de Oxigênio , Oxirredução , Butadienos/toxicidadeRESUMO
Partitioning of per- and polyfluoroalkyl substances (PFAS) to indoor materials, including clothing, may prolong the residence time of PFAS indoors and contribute to exposure. During the Indoor PFAS Assessment (IPA) Campaign, we measured concentrations of nine neutral PFAS in air and cotton cloth in 11 homes in North Carolina, for up to 9 months. Fluorotelomer alcohols (i.e., 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) are the dominant target species in indoor air, with concentrations ranging from 1.8 to 49 ng m-3, 1.2 to 53 ng m-3, and 0.21 to 5.7 ng m-3, respectively. In cloth, perfluorooctane sulfonamidoethanols (i.e., MeFOSE and EtFOSE) accumulated most significantly over time, reaching concentrations of up to 0.26 ng cm-2 and 0.24 ng cm-2, respectively. From paired measurements of neutral PFAS in air and suspended cloth, we derived cloth-air partition coefficients (Kca) for 6:2, 8:2, and 10:2 FTOH; ethylperfluorooctane sulfonamide (EtFOSA); MeFOSE; and EtFOSE. Mean log(Kca) values range from 4.7 to 6.6 and are positively correlated with the octanol-air partition coefficient. We investigated the effect of the cloth storage method on PFAS accumulation and the influence of home characteristics on air concentrations. Temperature had the overall greatest effect. This study provides valuable insights into PFAS distribution, fate, and exposure indoors.
Assuntos
Poluentes Atmosféricos , Fluorocarbonos , Monitoramento Ambiental , North Carolina , Poluentes Atmosféricos/análise , Fluorocarbonos/análiseRESUMO
The phase states and glass transition temperatures (Tg) of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how Tg changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the Tg of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS). The results demonstrate that the Tg of mixtures depends on their composition. The Kwei equation, a modified Gordon-Taylor equation with an added quadratic term and a fitting parameter representing strong intermolecular interactions, provides a good fit for the Tg-composition relationship of complex mixtures. By combining Raman spectroscopy with geometry optimization simulations obtained using density functional theory, we demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture.
RESUMO
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (â¢OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase â¢OH exposure (â¼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without â¢OH revealed that decomposition of oligomers by heterogeneous â¢OH oxidation acts as a sink for â¢OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this â¢OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.
Assuntos
Poluentes Atmosféricos , Sulfatos , Sulfatos/química , Atmosfera/química , Hemiterpenos , Butadienos , Aerossóis/química , Material Particulado/análise , Poeira/análise , Oxirredução , Estresse Oxidativo , Poluentes Atmosféricos/análiseRESUMO
Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.
Assuntos
Atmosfera , Hemiterpenos , Ácidos/química , Aerossóis/química , Atmosfera/química , Butadienos , Concentração de Íons de HidrogênioRESUMO
Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.
RESUMO
Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (â¼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, ß-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.
Assuntos
Sulfatos , Enxofre , Aerossóis/química , Teoria da Densidade Funcional , Oxirredução , Sulfatos/químicaRESUMO
Per- and polyfluoroalkyl substances (PFASs), with their water- and heat-resistant properties, have been widely used in industrial and consumer products, including floor waxes. Adverse health effects are associated with PFAS exposures (e.g., increased risk of cancer and immunotoxicity); however, exposures resulting from the use of PFAS-containing products are poorly understood. This study examines PFAS emissions during professional floor stripping/waxing and their potential for occupational exposures. We measured PFASs in dust and airborne particulate matter (PM2.0, aerodynamic diameter ≤ 2.0 µm) before, during, and after floor stripping/waxing activities in three rooms in a university building. PM2.0 samples were analyzed for 34 targeted PFASs by ultra-high performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometer (UHPLC/ESI-MS/MS). In total, ten PFASs were detected in PM2.0 collected during floor waxing. Five were consistently higher during floor stripping/waxing compared to before (two with 95% confidence interval): perfluoro-2-methoxyacetic acid, perfluorobutanoic acid, perfluorohexanoic acid, perfluoroheptanoic acid, and perfluorooctane sulfonic acid. For these five, estimated exposures during floor stripping were 80.6, 320.5, 83.8, 29.6, and 157.7 pg m-3 per hour of floor stripping, respectively, one order of magnitude greater than typical residential indoor and two orders of magnitude greater than ambient outdoor concentrations. Estimated emission rates were 3.0, 9.6, 3.4, 1.5, and 6.5 ng h-1m-2, respectively (34.6% uncertainty). Inhalation occupational exposures were in the range of 9.42-23.2 pg per kg body weight per hour of floor stripping across the five PFASs.
RESUMO
In the United States, millions of adults use electronic cigarettes (e-cigs), and a majority of these users are former or current cigarette smokers. It is unclear, whether prior smoking status affects biological responses induced by e-cigs. In this study, differentiated human nasal epithelial cells (hNECs) from nonsmokers and smokers at air-liquid interface were acutely exposed to the e-cig generated aerosols of humectants, propylene glycol (PG), and glycerol (GLY). Mucin levels were examined in the apical washes, and cytokine levels were assessed in the basolateral supernatants 24 h postexposure. The aerosol from the GLY exposure increased mucin 5, subtype AC (MUC5AC) levels in the apical wash of hNECs from nonsmokers, but not smokers. However, the aerosol from GLY induced pro-inflammatory responses in hNECs from smokers. We also exposed hNECs from nonsmokers and smokers to e-cig generated aerosol from PG:GLY with freebase nicotine or nicotine salt. The PG:GLY with freebase nicotine exposure increased MUC5AC and mucin 5, subtype B (MUC5B) levels in hNECs from nonsmokers, but the nicotine salt exposure did not. The PG:GLY with nicotine salt exposure increased pro-inflammatory cytokines in hNECs from smokers, which was not seen with the freebase nicotine exposure. Taken together, these data indicate that the e-cig generated aerosols from the humectants, mostly GLY, and the type of nicotine used cause differential effects in airway epithelial cells from nonsmokers and smokers. As e-cig use is increasing, it is important to understand that the biological effects of e-cig use are likely dependent on prior cigarette smoke exposure.
Assuntos
Células Epiteliais/efeitos dos fármacos , Nicotina/farmacologia , não Fumantes , Fumantes , Vaping/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Glicerol/farmacologia , Humanos , Higroscópicos/farmacologia , Pulmão/efeitos dos fármacos , Propilenoglicol/farmacologiaRESUMO
Secondary organic aerosol (SOA) is a major component of airborne fine particulate matter (PM2.5) that contributes to adverse human health effects upon inhalation. Atmospheric ozonolysis of α-pinene, an abundantly emitted monoterpene from terrestrial vegetation, leads to significant global SOA formation; however, its impact on pulmonary pathophysiology remains uncertain. In this study, we quantified an increasing concentration response of three well-established α-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetricarboxylic acids) and a full mixture of α-pinene SOA in A549 (alveolar epithelial carcinoma) and BEAS-2B (bronchial epithelial normal) lung cell lines. The three aforementioned tracers contributed â¼57% of the α-pinene SOA mass under our experimental conditions. Cellular proliferation, cell viability, and oxidative stress were assessed as toxicological end points. The three α-pinene SOA molecular tracers had insignificant responses in both cell types when compared with the α-pinene SOA (up to 200 µg mL-1). BEAS-2B cells exposed to 200 µg mL-1 of α-pinene SOA decreased cellular proliferation to â¼70% and 44% at 24- and 48-h post exposure, respectively; no changes in A549 cells were observed. The inhibitory concentration-50 (IC50) in BEAS-2B cells was found to be 912 and 230 µg mL-1 at 24 and 48 h, respectively. An approximate 4-fold increase in cellular oxidative stress was observed in BEAS-2B cells when compared with untreated cells, suggesting that reactive oxygen species (ROS) buildup resulted in the downstream cytotoxicity following 24 h of exposure to α-pinene SOA. Organic hydroperoxides that were identified in the α-pinene SOA samples likely contributed to the ROS and cytotoxicity. This study identifies the potential components of α-pinene SOA that likely modulate the oxidative stress response within lung cells and highlights the need to carry out chronic exposure studies on α-pinene SOA to elucidate its long-term inhalation exposure effects.
Assuntos
Monoterpenos Bicíclicos/efeitos adversos , Aerossóis/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacosRESUMO
The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.
Assuntos
Hemiterpenos , Nitratos , Aerossóis/análise , Pequim , Butadienos/análise , Hemiterpenos/análise , Nitratos/análiseRESUMO
In the United States, the recent surge of electronic cigarette (e-cig) use has raised questions concerning the safety of these devices. This study seeks to assess the pro-inflammatory and cellular stress effects of the vaped humectants propylene glycol (PG) and glycerol (GLY) on airway epithelial cells (16HBE cells and differentiated human bronchial epithelial cells) with a newly developed aerosol exposure system. This system allows for chemical characterization of e-cig generated aerosol particles as well as in vitro exposures of 16HBE cells at an air-liquid interface to vaped PG and GLY aerosol. Our data demonstrate that the process of vaping results in the formation of PG- and GLY-derived oligomers in the aerosol particles. Our in vitro data demonstrate an increase in pro-inflammatory cytokines IL-6 and IL-8 levels in response to vaped PG and GLY exposures. Vaped GLY also causes an increase in cellular stress signals HMOX1, NQO1, and carbonylated proteins when the e-cig device is operated at high wattages. Additionally, we find that the exposure of vaped PG causes elevated IL-6 expression, while the exposure of vaped GLY increases HMOX1 expression in human bronchial epithelial cells when the device is operated at high wattages. These findings suggest that vaporizing PG and GLY results in the formation of novel compounds and the exposure of vaped PG and GLY are detrimental to airway cells. Since PG and/or GLY is universally contained in all e-cig liquids, we conclude that these components alone can cause harm to the airway epithelium.
Assuntos
Citocinas/biossíntese , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Glicerol/toxicidade , Higroscópicos/toxicidade , Propilenoglicol/toxicidade , Aerossóis/química , Aerossóis/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Glicerol/química , Humanos , Higroscópicos/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Propilenoglicol/química , VapingRESUMO
Exposure to fine particulate matter (PM2.5), of which secondary organic aerosol (SOA) is a major constituent, is linked to adverse health outcomes, including cardiovascular disease, lung cancer, and preterm birth. Atmospheric oxidation of isoprene, the most abundant nonmethane hydrocarbon emitted into Earth's atmosphere primarily from vegetation, contributes to SOA formation. Isoprene-derived SOA has previously been found to alter inflammatory/oxidative stress genes. MicroRNAs (miRNAs) are epigenetic regulators that serve as post-transcriptional modifiers and key mediators of gene expression. To assess whether isoprene-derived SOA alters miRNA expression, BEAS-2B lung cells were exposed to laboratory-generated isoprene-derived SOA constituents derived from the acid-driven multiphase chemistry of authentic methacrylic acid epoxide (MAE) or isomeric isoprene epoxydiols (IEPOX) with acidic sulfate aerosol particles. These IEPOX- and MAE-derived SOA constituents have been shown to be measured in large quantities within PM2.5 collected from isoprene-rich areas affected by acidic sulfate aerosol particles derived from human activities. A total of 29 miRNAs were identified as differentially expressed when exposed to IEPOX-derived SOA and 2 when exposed to MAE-derived SOA, a number of which are inflammatory/oxidative stress associated. These results suggest that miRNAs may modulate the inflammatory/oxidative stress response to SOA exposure, thereby advancing the understanding of airway cell epigenetic response to SOA.
Assuntos
Butadienos/farmacologia , Hemiterpenos/farmacologia , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Aerossóis/química , Aerossóis/farmacologia , Butadienos/química , Células Cultivadas , Hemiterpenos/química , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , MicroRNAs/metabolismo , Estrutura MolecularRESUMO
Isoprene (C5H8) is the main non-methane hydrocarbon emitted into the global atmosphere. Despite intense research, atmospheric transformations of isoprene leading to secondary organic aerosol (SOA) are still not fully understood, including its multiphase chemical reactions. Herein, we report on the detailed structural characterization of atmospherically relevant isoprene-derived organosulfates (OSs) with a molecular weight (MW) of 212 (C5H8SO7), which are abundantly present in both ambient fine aerosol (PM2.5) and laboratory-generated isoprene SOA. The results obtained from smog chamber-generated isoprene SOA and aqueous-phase laboratory experiments coupled to the S(IV)-autooxidation chemistry of isoprene, 3-methyl-2(5H)-furanone, and 4-methyl-2(5H)-furanone, allowed us for the first time to fully elucidate the isomeric structures of the MW 212 OSs. By applying liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry, we firmly confirmed six positional isomers of the MW 212 OSs in PM2.5 collected from different sites in Europe and the United States. Our results also show that despite the low solubility of isoprene in water, aqueous-phase or multiphase chemistry can play an important role in the formation of OSs from isoprene. Possible formation mechanisms for the MW 212 OSs are also tentatively proposed.
Assuntos
Hemiterpenos , Aerossóis , Butadienos , Europa (Continente) , Lactonas , Peso Molecular , PentanosRESUMO
Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least â¼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, â¼97% in the Amazon and â¼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.
Assuntos
Poluentes Atmosféricos , Hemiterpenos , Aerossóis/análise , Brasil , Butadienos , Pentanos , Sudeste dos Estados UnidosRESUMO
Water-soluble organic gas (WSOG) concentrations are elevated in homes. However, WSOG sources, sinks, and concentration dynamics are poorly understood. We observed substantial variations in 23 residential indoor WSOG concentrations measured in real time in a North Carolina, U.S., home over several days with a high-resolution time-of-flight chemical ionization mass spectrometer equipped with iodide reagent ion chemistry (I-HR-ToF-CIMS). Concentrations of acetic, formic, and lactic acids ranged from 30-130, 15-53, and 2.5-360 µg m-3, respectively. Concentrations of several WSOGs, including acetic and formic acids, decreased considerably (â¼30-50%) when the air conditioner (AC) cycled on, suggesting that the AC system is an important sink for indoor WSOGs. In contrast to nonpolar organic gases, indoor WSOG loss rate coefficients were substantial for compounds with high oxygen-to-carbon (O/C) ratios (e.g., 1.6-2.2 h-1 for compounds with O/C > 0.75 when the AC system was off). Loss rate coefficients in the AC system were more uncertain but were estimated to be 1.5 h-1. Elevated concentrations of lactic acid coincided with increased human occupancy and cooking. We report several WSOGs emitted from cooking and cleaning as well as transported in from outdoors. In addition to indoor air chemistry, these results have implications to exposure and human health.