Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 20(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36135771

RESUMO

Ilimaquinone (IQ), a metabolite found in marine sponges, has been reported to have a number of biological properties, including potential anticancer activity against colon cancer. However, no clear understanding of the precise mechanism involved is known. The aim of this study was to examine the molecular mechanism by which IQ acts on HCT-116 cells. The anticancer activity of IQ was investigated by means of a cell viability assay followed by the determination of induction of apoptosis by means of the use of acridine orange-ethidium bromide (AO/EB) staining, Annexin V/PI double staining, DNA fragmentation assays, and TUNEL assays. The mitochondrial membrane potential (ΔΨm) was detected using the JC-1 staining technique, and the apoptosis-associated proteins were analyzed using real-time qRT-PCR. A molecular docking study of IQ with apoptosis-associated proteins was also conducted in order to assess the interaction between IQ and them. Our results suggest that IQ significantly suppressed the viability of HCT-116 cells in a dose-dependent manner. Fluorescent microscopy, flow cytometry, DNA fragmentation and the TUNEL assay in treated cells demonstrated apoptotic death mode. As an additional confirmation of apoptosis, the increased level of caspase-3 and caspase-9 expression and the downregulation of Bcl-2 and mitochondrial dysfunction were observed in HCT-116 cells after treatment with IQ, which was accompanied by a decrease in mitochondrial membrane potential (ΔΨm). Overall, the results of our studies demonstrate that IQ could trigger mitochondria-mediated apoptosis as demonstrated by a decrease in ΔΨm, activation of caspase-9/-3, damage of DNA and a decrease in the proportion of Bcl-2 through the mitochondrial-mediated apoptosis pathway.


Assuntos
Neoplasias Colorretais , Poríferos , Laranja de Acridina , Animais , Anexina A5/metabolismo , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , DNA/metabolismo , Etídio , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial , Simulação de Acoplamento Molecular , Poríferos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinonas , Sesquiterpenos
2.
J Biomol Struct Dyn ; 41(17): 8629-8633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36218112

RESUMO

Monkeypox is a possible public health concern that requires appropriate attention in order to prevent the spread of the disease. Currently, artificial intelligence (AI) is making a significant impact on precision medicine, reshaping and integrating the large amount of data derived from multiomics analyses and revolutionizing the deep-learning strategies. There has been a significant progress in the use of AI to detect, screen, diagnose, and classify diseases, characterize virus genomes, assess biomarkers for prognostic and predictive purposes, and develop follow-up strategies. Hence, it is possible to use AI for the identification of disease clusters, cases monitoring, forecasting the future outbreak, determining mortality risk, diagnosing, managing, and identifying patterns for studying disease trends. AI may also be utilized to assist gene therapy and other therapies that we are not currently able to use in healthcare. It is possible to combine pharmacology and gene therapy with regenerative medicine with the help of AI. It will directly benefit the public in overcoming fear and panic of health risks. Therefore, AI can be an effective weapon to fight against Monkeypox infection, and may prove to be an invaluable future tool in improving the clinical management of patients. Key Points: Emergence and spread of the Monkeypox virus is a new public health crisis; threatening the world. This opinion piece highlights the urgently required information for immediate delivery of solutions on controlling and monitoring the spread of Monkeypox infection through Artificial IntelligenceCommunicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 41(23): 13679-13695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852556

RESUMO

Due to the rapid spread of the monkeypox virus and rise in the number of cases, there is an urgent need for the development of effective drugs against the infection. Serine/threonine protein kinase (Ser/Thr kinase) and Thymidine Kinase (TK) plays an imperative role in the replication and virulence of monkeypox virus and thus is deliberated as an attractive target in anti-viral drug development. In the present study, the 3D structure of monkeypox virus Ser/Thr kinase and TK was generated via molecular modeling techniques and performed their thorough structural analysis. We have screened potent anti-viral phytochemicals from the literature to inhibit Ser/Thr kinase and TK. As part of the initial screening, the physicochemical properties of the compounds were examined. Following this, a structure-based molecular docking technique was used to select compounds based on their binding affinity towards Ser/Thr kinase and TK. In order to find more potent hits against Ser/Thr kinase and TK, further examinations of ADMET properties, PAINS patterns and blood-brain barrier permeability were conducted. As a result, thalimonine and galanthamine were identified from the screening process bearing appreciable binding affinity towards Ser/Thr kinase and TK respectively, which showed a worthy set of drug-like properties. In the end, molecular dynamics simulations were performed for 100 ns, which showed decent stability of both protein-ligand complex throughout the trajectory. Due to the possibility that both monkeypox virus target proteins may be inhibited by thalimonine and galanthamine, our study highlights the need to investigate in vivo effects of thalimonine and galanthamine.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/química , Monkeypox virus , Simulação de Acoplamento Molecular , Galantamina , Proteínas Virais , Timidina , Antivirais/farmacologia , Serina
4.
Microorganisms ; 10(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630468

RESUMO

Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography-mass spectrometry (GC-MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC-MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.

5.
Antibiotics (Basel) ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34943758

RESUMO

Biosurfactants derived from different microbes are an alternative to chemical surfactants, which have broad applications in food, oil, biodegradation, cosmetic, agriculture, pesticide and medicine/pharmaceutical industries. This is due to their environmentally friendly, biocompatible, biodegradable, effectiveness to work under various environmental conditions and non-toxic nature. Lactic acid bacteria (LAB)-derived glycolipid biosurfactants can play a major role in preventing bacterial attachment, biofilm eradication and related infections in various clinical settings and industries. Hence, it is important to explore and identify the novel molecule/method for the treatment of biofilms of pathogenic bacteria. In the present study, a probiotic Lactobacillus rhamnosus (L. rhamnosus) strain was isolated from human breast milk. Firstly, its ability to produce biosurfactants, and its physicochemical and functional properties (critical micelle concentration (CMC), reduction in surface tension, emulsification index (% EI24), etc.) were evaluated. Secondly, inhibition of bacterial adhesion and biofilm eradication by cell-bound biosurfactants from L. rhamnosus was performed against various biofilm-forming pathogens (B. subtilis, P. aeruginosa, S. aureus and E. coli). Finally, bacterial cell damage, viability of cells within the biofilm, exopolysaccharide (EPS) production and identification of the structural analogues of the crude biosurfactant via gas chromatography-mass spectrometry (GC-MS) analysis were also evaluated. As a result, L. rhamnosus was found to produce 4.32 ± 0.19 g/L biosurfactant that displayed a CMC of 3.0 g/L and reduced the surface tension from 71.12 ± 0.73 mN/m to 41.76 ± 0.60 mN/m. L. rhamnosus cell-bound crude biosurfactant was found to be effective against all the tested bacterial pathogens. It displayed potent anti-adhesion and antibiofilm ability by inhibiting the bacterial attachment to surfaces, leading to the disruption of biofilm formation by altering the integrity and viability of bacterial cells within biofilms. Our results also confirm the ability of the L. rhamnosus cell-bound-derived biosurfactant to damage the architecture of the biofilm matrix, as a result of the reduced total EPS content. Our findings may be further explored as a green alternative/approach to chemically synthesized toxic antibiofilm agents for controlling bacterial adhesion and biofilm eradication.

6.
RSC Adv ; 10(62): 37707-37720, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35515150

RESUMO

The outbreak of novel coronavirus, SARS-CoV-2, has infected more than 36 million people and caused approximately 1 million deaths around the globe as of 9 October 2020. The escalating outspread of the virus and rapid rise in the number of cases require the instantaneous development of effectual drugs and vaccines. Presently, there are no approved drugs or vaccine available to treat the infection. In such scenario, one of the propitious therapeutic approaches against viral infection is to explore enzyme inhibitors amidst natural compounds, utilizing computational approaches aiming to get products with negligible side effects. In the present study, the inhibitory prospects of ilimaquinone (marine sponge metabolite) were assessed in comparison with hydroxychloroquine, azithromycin, favipiravir, ivermectin and remdesivir at the active binding pockets of nine different vital SARS-CoV-2 target proteins (spike receptor binding domain, RNA-dependent RNA polymerase, Nsp10, Nsp13, Nsp14, Nsp15, Nsp16, main protease, and papain-like-protease), employing an in silico molecular interaction based approach. In addition, molecular dynamics (MD) simulations of the SARS-CoV-2 papain-like protease (PLpro)-ilimaquinone complex were also carried out to calculate various structural parameters including root mean square fluctuation (RMSF), root mean square deviation (RMSD), radius of gyration (R g) and hydrogen bond interactions. PLpro is a promising drug target, due to its imperative role in viral replication and additional function of stripping ubiquitin and interferon-stimulated gene 15 (ISG15) from host-cell proteins. In light of the possible inhibition of all vital SARS-CoV-2 target proteins, our study has emphasized the importance to study in depth ilimaquinone actions in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA