Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 25(4): e14250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146130

RESUMO

BACKGROUND: Organ-at-risk (OAR) sparing is often assessed using an overlap volume-based parameter, defined as the ratio of the volume of OAR that overlaps the planning target volume (PTV) to the whole OAR volume. However, this conventional overlap-based predictive parameter (COPP) does not consider the volume relationship between the PTV and OAR. PURPOSE: We propose a new overlap-based predictive parameter that consider the PTV volume. The effectiveness of proposed overlap-based predictive parameter (POPP) is evaluated compared with COPP. METHODS: We defined as POPP = (overlap volume between OAR and PTV/OAR volume) × (PTV volume/OAR volume). We generated intensity modulated radiation therapy (IMRT) based on step and shoot technique, and volumetric modulated arc therapy (VMAT) plans with the Auto-Planning module of Pinnacle3 treatment planning system (v14.0, Philips Medical Systems, Fitchburg, WI) using the American Association of Physicists in Medicine Task Group (TG119) prostate phantom. The relationship between the position and size of the prostate phantom was systematically modified to simulate various geometric arrangements. The correlation between overlap-based predictive parameters (COPP and POPP) and dose-volume metrics (mean dose, V70Gy, V60Gy, and V37.5 Gy for rectum and bladder) was investigated using linear regression analysis. RESULTS: Our results indicated POPP was better than COPP in predicting intermediate-dose metrics. The bladder results showed a trend similar to that of the rectum. The correlation coefficient of POPP was significantly greater than that of COPP in < 62 Gy (82% of the prescribed dose) region for IMRT and in < 55 Gy (73% of the prescribed dose) region for VMAT regarding the rectum (p < 0.05). CONCLUSIONS: POPP is superior to COPP for creating predictive models at an intermediate-dose level. Because rectal bleeding and bladder toxicity can be associated with intermediate-doses as well as high-doses, it is important to predict dose-volume metrics for various dose levels. POPP is a useful parameter for predicting dose-volume metrics and assisting the generation of treatment plans.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Neoplasias da Próstata/radioterapia
3.
Int J Radiat Oncol Biol Phys ; 94(1): 172-180, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26700711

RESUMO

PURPOSE: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. METHODS AND MATERIALS: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. RESULTS: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), -1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. CONCLUSIONS: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Movimento , Posicionamento do Paciente/instrumentação , Radiocirurgia/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Sistemas Computacionais , Fracionamento da Dose de Radiação , Marcadores Fiduciais , Humanos , Neoplasias Pulmonares/patologia , Posicionamento do Paciente/estatística & dados numéricos , Radiocirurgia/instrumentação , Erros de Configuração em Radioterapia/prevenção & controle , Respiração , Fatores de Tempo
4.
J Radiat Res ; 56(2): 372-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25618136

RESUMO

The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high- and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter.


Assuntos
Artefatos , Tecnologia de Fibra Óptica/instrumentação , Lentes , Radiometria/instrumentação , Contagem de Cintilação/instrumentação , Radiação de Fundo , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Radiol Phys Technol ; 3(1): 84-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20821107

RESUMO

In the physical processes of proton interaction in bio-materials, most of the proton energy is transferred to electrons. Ionization and excitation occur most frequently around the Bragg peak region, where nuclear reactions also exist. In this study, we investigated the processes of energy deposition by considering interactions including the nuclear reactions between protons and water molecules by a Monte Carlo simulation for proton therapy. We estimated the number of particles produced by a variety of nuclear reactions, and we focused on the interaction in the low-energy region (below 1 MeV). Furthermore, we considered the charge-changing processes in the low-energy region (less than a few hundred keV). Finally, we evaluated the total dose and the contribution of primary protons and secondary particles through nuclear reactions to the absorbed dose. The results showed that the protons generate numerous neutrons via nuclear reactions. Particularly, neutrons with relatively low energies produce recoil protons by elastic collisions with the hydrogen atoms. Around the Bragg peak, low-energy primary protons (slowed-down protons) are prevalent, whereas recoil (secondary) protons gradually become dominant behind the distal falloff region of the Bragg peak. Therefore, around the Bragg peak, the main contribution to the absorbed dose is that of the primary protons (from 80 to 90%), whereas secondary protons created by primary proton-induced reactions contribute to the dose from 20 to 5%. Behind the distal endpoint of the Bragg peak, the absorbed dose is mainly due to the protons produced by (1)H(n, p), and the contribution of these is about 70%.


Assuntos
Energia Nuclear , Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA