Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
G3 (Bethesda) ; 8(8): 2663-2672, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29930198

RESUMO

Idiopathic scoliosis (IS) is a structural lateral spinal curvature of ≥10° that affects up to 3% of otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the overall genetic etiology of IS is not well understood. We used exome sequencing to study five multigenerational families with IS. Bioinformatic analyses identified unique and low frequency variants (minor allele frequency ≤5%) that were present in all sequenced members of the family. Across the five families, we identified a total of 270 variants with predicted functional consequences in 246 genes, and found that eight genes were shared by two families. We performed GO term enrichment analyses, with the hypothesis that certain functional annotations or pathways would be enriched in the 246 genes identified in our IS families. Using three complementary programs to complete these analyses, we identified enriched categories that include stereocilia and other actin-based cellular projections, cilia and other microtubule-based cellular projections, and the extracellular matrix (ECM). Our results suggest that there are multiple paths to IS and provide a foundation for future studies of IS pathogenesis.


Assuntos
Citoesqueleto de Actina/genética , Matriz Extracelular/genética , Microtúbulos/genética , Escoliose/genética , Adulto , Criança , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Microtúbulos/metabolismo , Linhagem , Polimorfismo Genético , Escoliose/etiologia , Escoliose/patologia
2.
Congenit Heart Dis ; 11(6): 683-692, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27218670

RESUMO

INTRODUCTION: Perturbations in the CACNA1C-encoded L-type calcium channel α-subunit have been linked recently to heritable arrhythmia syndromes, including Timothy syndrome, Brugada syndrome, early repolarization syndrome, and long QT syndrome. These heritable arrhythmia syndromes may serve as a pathogenic basis for autopsy-negative sudden unexplained death in the young (SUDY). However, the contribution of CACNA1C mutations to SUDY is unknown. OBJECTIVE: We set out to determine the spectrum, prevalence, and pathophysiology of rare CACNA1C variants in SUDY. METHODS: Mutational analysis of CACNA1C was conducted in 82 SUDY cases using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct sequencing. Identified variants were engineered using site-directed mutagenesis, and heterologously expressed in TSA-201 or HEK293 cells. RESULTS: Two SUDY cases (2.4%) harbored functional variants in CACNA1C. The E850del and N2091S variants involve highly conserved residues and localize to the II-III linker and C-terminus, respectively. Although observed in publically available exome databases, both variants confer abnormal CaV 1.2 electrophysiological characteristics. Examination of the electrophysiological properties revealed the E850del mutation in CACNA1C led to a 95% loss-of-function in ICa , and the N2091S variant led to a 105% gain-of-function in ICa. Additionally, N2091S led to minor kinetic alterations including a -3.4 mV shift in V1/2 of activation. CONCLUSION: This study provides molecular and functional evidence that rare CACNA1C genetic variants may contribute to the underlying pathogenic basis for some cases of SUDY in either a gain or loss-of-function mechanism.


Assuntos
Arritmias Cardíacas/genética , Canais de Cálcio Tipo L/genética , Morte Súbita Cardíaca/etiologia , Mutação , Adolescente , Adulto , Fatores Etários , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Lactente , Cinética , Masculino , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Fenótipo , Fatores de Risco , Transfecção , Adulto Jovem
3.
PLoS One ; 9(9): e106982, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184293

RESUMO

Mutations in CACNA1C that increase current through the CaV1.2 L-type Ca2+ channel underlie rare forms of long QT syndrome (LQTS), and Timothy syndrome (TS). We identified a variant in CACNA1C in a male child of Filipino descent with arrhythmias and extracardiac features by candidate gene sequencing and performed functional expression studies to electrophysiologically characterize the effects of the variant on CaV1.2 channels. As a baby, the subject developed seizures and displayed developmental delays at 30 months of age. At age 5 years, he displayed a QTc of 520 ms and experienced recurrent VT. Physical exam at 17 years of age was notable for microcephaly, short stature, lower extremity weakness and atrophy with hyperreflexia, spastic diplegia, multiple dental caries and episodes of rhabdomyolysis. Candidate gene sequencing identified a G>C transversion at position 5731 of CACNA1C (rs374528680) predicting a glycine>arginine substitution at residue 1911 (p.G1911R) of CaV1.2. The allele frequency of this variant is 0.01 in Malays, but absent in 984 Caucasian alleles and in the 1000 genomes project. In electrophysiological analyses, the variant decreased voltage-dependent inactivation, thus causing a gain of function of CaV1.2. We also observed a negative shift of V1/2 of activation and positive shift of V1/2 of channel inactivation, resulting in an increase of the window current. Together, these suggest a gain-of-function effect on CaV1.2 and suggest increased susceptibility for arrhythmias in certain clinical settings. The p.G1911R variant was also identified in a case of sudden unexplained infant death (SUID), for which an increasing number of clinical observations have demonstrated can be associated with arrhythmogenic mutations in cardiac ion channels. In summary, the combined effects of the CACNA1C variant to diminish voltage-dependent inactivation of CaV1.2 and increase window current expand our appreciation of mechanisms by which a gain of function of CaV1.2 can contribute to QT prolongation.


Assuntos
Transtorno Autístico , Canais de Cálcio Tipo L , Síndrome do QT Longo , Potenciais da Membrana/genética , Mutação , Sindactilia , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Pré-Escolar , Feminino , Humanos , Lactente , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Masculino , Sindactilia/genética , Sindactilia/metabolismo , Sindactilia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA