Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Pathol ; 193(10): 1528-1547, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422147

RESUMO

Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.


Assuntos
Miopatias da Nemalina , Animais , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Debilidade Muscular , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Proteômica
2.
Am J Pathol ; 193(10): 1548-1567, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419385

RESUMO

ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.


Assuntos
Miopatias da Nemalina , Animais , Camundongos , Actinas/genética , Modelos Animais de Doenças , Músculo Esquelético/metabolismo , Mutação , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Proteômica
3.
Exp Cell Res ; 424(2): 113507, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796746

RESUMO

Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Superóxidos/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/patologia , Actinas/genética , Actinas/metabolismo , Mutação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Transfusion ; 61(4): 1278-1285, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483962

RESUMO

BACKGROUND: We previously described a mouse model in which platelet immunization between selected strains leads to production of alloantibodies and severe autoimmune thrombocytopenia and mimics the human condition posttransfusion purpura (PTP). This report describes studies defining epitopes recognized by these alloantibodies. STUDY DESIGN: Hybridomas were produced from spleen cells of immunized mice. Glycoprotein (GP) targets of resulting monoclonal antibodies were characterized by immunoprecipitation using platelets from the immunizing strains. Antigens defined by single amino acid (AA) polymorphisms recognized by monoclonal antibodies were identified by mutagenizing target glycoproteins expressed in Chinese hamster ovary cells and observing the effects on antibody binding. RESULTS: Three monoclonal antibodies (417.1, 417.3, 425.1) were produced that recognized GPIIb on immunizing platelets. Monoclonal antibodies 417.1 and 417.3 both required G111 and 425.1 required V37, located on the beta propeller domain of GPIIb, for binding to platelets from the immunizing strains C57 and PWK, respectively. Injection of 417.3 and 425.1 into mice caused platelet destruction only in mice with GPIIb containing the targeted AAs. CONCLUSIONS: Findings made provide evidence that alloantibodies produced by mice experiencing thrombocytopenia in a mouse model of PTP are specific for single AA polymorphisms that differ in GPIIb/IIIa integrin of the immunizing and immunized strains and therefore closely resemble the potent alloantibodies found in patients with PTP. The observations show that naturally occurring single AA differences in GPIIb/IIIa integrin of various mouse strains are highly immunogenic in the mouse strains studied and readily induce antibodies comparable to human platelet antigen-specific antibodies found in transfused and pregnant humans.


Assuntos
Plaquetas/imunologia , Hibridomas/imunologia , Integrina beta3/imunologia , Isoanticorpos/imunologia , Glicoproteína IIb da Membrana de Plaquetas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos/metabolismo , Plaquetas/metabolismo , Células CHO/imunologia , Células CHO/metabolismo , Cricetulus , Epitopos/imunologia , Feminino , Hibridomas/metabolismo , Imunização/efeitos adversos , Imunização/métodos , Integrina beta3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Púrpura Trombocitopênica Idiopática/imunologia , Trombocitopenia/imunologia , Trombocitopenia/metabolismo , Reação Transfusional/imunologia , Reação Transfusional/metabolismo
5.
J Inherit Metab Dis ; 44(2): 492-501, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368311

RESUMO

Loss-of-function mutations in the deoxyguanosine kinase (DGUOK) gene result in a mitochondrial DNA (mtDNA) depletion syndrome. DGUOK plays an important role in converting deoxyribonucleosides to deoxyribonucleoside monophosphates via the salvage pathway for mtDNA synthesis. DGUOK deficiency manifests predominantly in the liver; the most common cause of death is liver failure within the first year of life and no therapeutic options are currently available. in vitro supplementation with deoxyguanosine or deoxyguanosine monophosphate (dGMP) were reported to rescue mtDNA depletion in DGUOK-deficient, patient-derived fibroblasts and myoblasts. CERC-913, a novel ProTide prodrug of dGMP, was designed to bypass defective DGUOK while improving permeability and stability relative to nucleoside monophosphates. To evaluate CERC-913 for its ability to rescue mtDNA depletion, we developed a primary hepatocyte culture model using liver tissue from DGUOK-deficient rats. DGUOK knockout rat hepatocyte cultures exhibit severely reduced mtDNA copy number (~10%) relative to wild type by qPCR and mtDNA content remains stable for up to 8 days in culture. CERC-913 increased mtDNA content in DGUOK-deficient hepatocytes up to 2.4-fold after 4 days of treatment in a dose-dependent fashion, which was significantly more effective than dGMP at similar concentrations. These early results suggest primary hepatocyte culture is a useful model for the study of mtDNA depletion syndromes and that CERC-913 treatment can improve mtDNA content in this model.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Nucleotídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Animais , Células CACO-2 , Variações do Número de Cópias de DNA , DNA Mitocondrial/efeitos dos fármacos , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Mutação , Nucleotídeos/metabolismo , Pró-Fármacos/farmacologia , Ratos , Ratos Transgênicos
6.
Artigo em Inglês | MEDLINE | ID: mdl-27871801

RESUMO

The highly orchestrated transcriptional and metabolic reprogramming during activation drastically transforms the main functions and physiology of human macrophages across the polarization spectrum. Lipids, for example, can modify protein function by acting remotely as signaling molecules but also locally by altering the physical properties of cellular membranes. These changes play key roles in the functions of highly plastic immune cells due to their involvement in inflammation, immune responses, phagocytosis and wound healing processes. We report an analysis of major membrane lipids of distinct phenotypes of resting (M0), classically activated (M1), alternatively activated (M2a) and deactivated (M2c) human monocyte derived macrophages from different donors. Samples were subjected to supercritical fluid chromatography-ion mobility-mass spectrometry analysis, which allowed separations based on lipid class, facilitating the profiling of their fatty acid composition. Different levels of arachidonic acid mobilization as well as other fatty acid changes were observed for different lipid classes in the distinct polarization phenotypes, suggesting the activation of highly orchestrated and specific enzymatic processes in the biosynthesis of lipid signaling molecules and cell membrane remodeling. Thromboxane A2 production appeared to be a specific marker of M1 polarization. These alterations to the global composition of lipid bi-layer membranes in the cell provide a potential methodology for the definition and determination of cellular and tissue activation states.


Assuntos
Metabolismo dos Lipídeos , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Adolescente , Adulto , Ácidos Graxos/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
7.
Biol Open ; 13(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39158383

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and is associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study uses RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.


Assuntos
Biomarcadores , Proteína HMGB1 , Distrofia Muscular de Duchenne , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Distrofina/metabolismo , Distrofina/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética
8.
J Virol ; 86(20): 11242-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875976

RESUMO

Adaptor protein complex 3 (AP-3) is a heterotetramer that is involved in signal-mediated protein sorting to endosomal-lysosomal organelles. AP-3 deficiency in humans, induced by mutations in the AP3B1 gene, which encodes the ß3A subunit of the AP-3 complex, results in Hermansky-Pudlak syndrome 2 (HPS2), which is a rare genetic disorder with defective lysosome-related organelles. In a previous study, we identified the AP-3 complex as an important contributor to HIV-1 assembly and release. We hypothesized that cells from patients affected by HPS2 should demonstrate abnormalities of HIV-1 assembly. Here we report that HIV-1 particle assembly and release are indeed diminished in HPS2 fibroblast cultures. Transient or stable expression of the full-length wild-type ß3A subunit in HPS2 fibroblasts restored the impaired virus assembly and release. In contrast, virus-like particle release mediated by MA-deficient Gag mutants lacking the AP-3 binding site was not altered in HPS2 cells, indicating that the MA domain serves as the major viral determinant required for the recruitment of the AP-3 complex. AP-3 deficiency decreased HIV-1 Gag localization at the plasma membrane and late endosomes and increased the accumulation of HIV-1 Gag at an intermediate step between early and late endosomes. Blockage of the clathrin-mediated endocytic pathway in HPS2 cells did not reverse the inhibited virus assembly and release imposed by the AP-3 deficiency. These results demonstrate that the intact and stable AP-3 complex is required for HIV-1 assembly and release, and the involvement of the AP-3 complex in late stages of the HIV-1 replication cycle is independent of clathrin-mediated endocytosis.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades delta do Complexo de Proteínas Adaptadoras/metabolismo , HIV-1/fisiologia , Síndrome de Hermanski-Pudlak , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Complexo 3 de Proteínas Adaptadoras/deficiência , Complexo 3 de Proteínas Adaptadoras/genética , Subunidades delta do Complexo de Proteínas Adaptadoras/deficiência , Subunidades delta do Complexo de Proteínas Adaptadoras/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Células Cultivadas , Clatrina/antagonistas & inibidores , Endocitose , Fibroblastos/virologia , HIV-1/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/virologia , Humanos , Mutação , Transdução de Sinais , Pele/virologia , Liberação de Vírus/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
9.
Blood Adv ; 4(2): 287-295, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31968077

RESUMO

Posttransfusion purpura (PTP) is an uncommon but life-threatening condition characterized by profound thrombocytopenia occurring ∼1 week after a blood transfusion. The hallmark of PTP is a potent immunoglobulin G antibody specific for a transfused platelet-specific alloantigen, usually located on glycoprotein IIb/IIIa (GPIIb/IIIa; αIIb/ß3 integrin). It is widely thought that this alloantibody somehow causes the thrombocytopenia, despite absence from host platelets of the alloantigen for which it is specific. In studies described here, we found that cross-strain platelet immunization in mice commonly induces GPIIb/IIIa-specific alloantibodies combined with platelet-specific autoantibodies and varying degrees of thrombocytopenia, and we identified 1 strain combination (129S1Svlm/PWKPhJ) in which 95% of immunized mice made both types of antibody and developed severe thrombocytopenia. There was a strong inverse correlation between autoantibody strength and platelet decline (P < .0001) and plasma from mice that produced autoantibodies caused thrombocytopenia when transfused to syngeneic animals, arguing that autoantibodies were the cause of thrombocytopenia. The findings define a model in which a routine alloimmune response to platelets regularly transitions to an autoimmune reaction capable of causing severe thrombocytopenia and support the hypothesis that PTP is an autoimmune disorder.


Assuntos
Plaquetas/imunologia , Imunização/métodos , Transfusão de Plaquetas/métodos , Reação Transfusional/terapia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
10.
Am J Reprod Immunol ; 81(3): e13075, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582878

RESUMO

PROBLEM: During pregnancy, Group B Streptococcus (GBS) can infect fetal membranes to cause chorioamnionitis, resulting in adverse pregnancy outcomes. Macrophages are the primary resident phagocyte in extraplacental membranes. Protein kinase D (PKD) was recently implicated in mediating pro-inflammatory macrophage responses to GBS outside of the reproductive system. This work aimed to characterize the human placental macrophage inflammatory response to GBS and address the extent to which PKD mediates such effects. METHOD: Primary human placental macrophages were infected with GBS in the presence or absence of a specific, small molecule PKD inhibitor, CRT 0066101. Macrophage phenotypes were characterized by evaluating gene expression, cytokine release, assembly of the NLRP3 inflammasome, and NFκB activation. RESULTS: GBS evoked a strong inflammatory phenotype characterized by the release of inflammatory cytokines (TNFα, IL-1ß, IL-6 (P ≤ 0.05), NLRP3 inflammasome assembly (P ≤ 0.0005), and NFκB activation (P ≤ 0.05). Pharmacological inhibition of PKD suppressed these responses, newly implicating a role for PKD in mediating immune responses of primary human placental macrophages to GBS. CONCLUSION: PKD plays a critical role in mediating placental macrophage inflammatory activation in response to GBS infection.


Assuntos
Inflamassomos/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Placenta/imunologia , Proteína Quinase C/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/fisiologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gravidez , Transdução de Sinais
11.
PLoS One ; 14(9): e0222910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536604

RESUMO

Group B Streptococcus (GBS) is an opportunistic pathogen that causes preterm birth and neonatal disease. Although GBS is known to exhibit vast diversity in virulence across strains, the mechanisms of GBS-associated pathogenesis are incompletely understood. We hypothesized that GBS strains of different genotypes would vary in their ability to elicit host inflammatory responses, and that strains associated with neonatal disease would induce different cytokine profiles than those associated with colonization. Using a multiplexed, antibody-based protein detection array, we found that production of a discrete number of inflammatory mediators by THP-1 macrophage-like cells was universally induced in response to challenge with each of five genetically distinct GBS isolates, while other responses appeared to be strain-specific. Key array responses were validated by ELISA using the initial five strains as well as ten additional strains with distinct genotypic and phenotypic characteristics. Interestingly, IL-6 was significantly elevated following infection with neonatal infection-associated sequence type (ST)-17 strains and among strains possessing capsule (cps) type III. Significant differences in production of IL1-ß, IL-10 and MCP-2 were also identified across STs and cps types. These data support our hypothesis and suggest that unique host innate immune responses reflect strain-specific differences in virulence across GBS isolates. Such data might inform the development of improved diagnostic or prognostic strategies against invasive GBS infections.


Assuntos
Citocinas/imunologia , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/genética , Citocinas/metabolismo , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Especificidade da Espécie , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Streptococcus agalactiae/patogenicidade , Células THP-1 , Virulência/genética
12.
mBio ; 9(6)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459195

RESUMO

Streptococcus agalactiae, or group B Streptococcus (GBS), is a common perinatal pathogen. GBS colonization of the vaginal mucosa during pregnancy is a risk factor for invasive infection of the fetal membranes (chorioamnionitis) and its consequences such as membrane rupture, preterm labor, stillbirth, and neonatal sepsis. Placental macrophages, or Hofbauer cells, are fetally derived macrophages present within placental and fetal membrane tissues that perform vital functions for fetal and placental development, including supporting angiogenesis, tissue remodeling, and regulation of maternal-fetal tolerance. Although placental macrophages as tissue-resident innate phagocytes are likely to engage invasive bacteria such as GBS, there is limited information regarding how these cells respond to bacterial infection. Here, we demonstrate in vitro that placental macrophages release macrophage extracellular traps (METs) in response to bacterial infection. Placental macrophage METs contain proteins, including histones, myeloperoxidase, and neutrophil elastase similar to neutrophil extracellular traps, and are capable of killing GBS cells. MET release from these cells occurs by a process that depends on the production of reactive oxygen species. Placental macrophage METs also contain matrix metalloproteases that are released in response to GBS and could contribute to fetal membrane weakening during infection. MET structures were identified within human fetal membrane tissues infected ex vivo, suggesting that placental macrophages release METs in response to bacterial infection during chorioamnionitis.IMPORTANCEStreptococcus agalactiae, also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion, but they may also release important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor.


Assuntos
Corioamnionite/imunologia , Armadilhas Extracelulares/microbiologia , Macrófagos/microbiologia , Placenta/citologia , Explosão Respiratória , Streptococcus agalactiae/imunologia , Corioamnionite/microbiologia , Armadilhas Extracelulares/imunologia , Feminino , Ruptura Prematura de Membranas Fetais/microbiologia , Humanos , Macrófagos/enzimologia , Metaloproteinases da Matriz , Placenta/imunologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA