RESUMO
ABSTRACT: Pediatric B-cell precursor (BCP) lymphoblastic malignancies are neoplasms with manifestation either in the bone marrow or blood (BCP acute lymphoblastic leukemia [BCP-ALL]) or are less common in extramedullary tissue (BCP lymphoblastic lymphoma [BCP-LBL]). Although both presentations are similar in morphology and immunophenotype, molecular studies have been virtually restricted to BCP-ALL so far. The lack of molecular studies on BCP-LBL is due to its rarity and restriction on small, mostly formalin-fixed paraffin-embedded (FFPE) tissues. Here, to our knowledge, we present the first comprehensive mutational and transcriptional analysis of what we consider the largest BCP-LBL cohort described to date (n = 97). Whole-exome sequencing indicated a mutational spectrum of BCP-LBL, strikingly similar to that found in BCP-ALL. However, epigenetic modifiers were more frequently mutated in BCP-LBL, whereas BCP-ALL was more frequently affected by mutation in genes involved in B-cell development. Integrating copy number alterations, somatic mutations, and gene expression by RNA sequencing revealed that virtually all molecular subtypes originally defined in BCP-ALL are present in BCP-LBL, with only 7% of lymphomas that were not assigned to a subtype. Similar to BCP-ALL, the most frequent subtypes of BCP-LBL were high hyperdiploidy and ETV6::RUNX1. Tyrosine kinase/cytokine receptor rearrangements were detected in 7% of BCP-LBL. These results indicate that genetic subtypes can be identified in BCP-LBL using next-generation sequencing, even in FFPE tissue, and may be relevant to guide treatment.
Assuntos
Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Sequenciamento do Exoma , Transcrição GênicaRESUMO
BACKGROUND: The BCR::ABL1 is a hallmark of chronic myeloid leukemia (CML) and is also found in acute lymphoblastic leukemia (ALL). Most genomic breaks on the BCR side occur in two regions - Major and minor - leading to p210 and p190 fusion proteins, respectively. METHODS: By multiplex long-distance PCR or next-generation sequencing technology we characterized the BCR::ABL1 genomic fusion in 971 patients (adults and children, with CML and ALL: pediatric ALL: n = 353; pediatric CML: n = 197; adult ALL: n = 166; adult CML: n = 255 patients) and designed "Break-App" web tool to allow visualization and various analyses of the breakpoints. Pearson's Chi-Squared test, Kolmogorov-Smirnov test and logistic regression were used for statistical analyses. RESULTS: Detailed analysis showed a non-random distribution of breaks in both BCR regions, whereas ABL1 breaks were distributed more evenly. However, we found a significant difference in the distribution of breaks between CML and ALL. We found no association of breakpoints with any type of interspersed repeats or DNA motifs. With a few exceptions, the primary structure of the fusions suggests non-homologous end joining being responsible for the BCR and ABL1 gene fusions. Analysis of reciprocal ABL1::BCR fusions in 453 patients showed mostly balanced translocations without major deletions or duplications. CONCLUSIONS: Taken together, our data suggest that physical colocalization and chromatin accessibility, which change with the developmental stage of the cell (hence the difference between ALL and CML), are more critical factors influencing breakpoint localization than presence of specific DNA motifs.
Assuntos
Pontos de Quebra do Cromossomo , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adulto , Criança , Masculino , Feminino , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. METHODS: We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) (n = 6 each). RESULTS: Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10-4 (0.01%)-10-5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. CONCLUSIONS: WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours.
Assuntos
Biomarcadores Tumorais/genética , Rearranjo Gênico , Neoplasia Residual/patologia , Neuroblastoma/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Sarcoma de Ewing/patologia , Sequenciamento Completo do Genoma/métodos , Adolescente , Neoplasias Ósseas/sangue , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteína Proto-Oncogênica N-Myc/genética , Neoplasia Residual/genética , Neuroblastoma/sangue , Neuroblastoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Proto-Oncogênica c-fli-1/genética , Receptores de Antígenos de Linfócitos T/genética , Sarcoma de Ewing/sangue , Sarcoma de Ewing/genética , Regulador Transcricional ERG/genéticaRESUMO
BACKGROUND: ABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers. METHODS: Precise genomic breakpoints were defined from targeted or whole genome next generation sequencing for ABL-fusions and BCR-ABL1. Quantitative PCR assays were designed and used to re-measure MRD in remission bone marrow samples previously tested using Ig/TCR markers. All MRD testing complied with EuroMRD guidelines. RESULTS: ABL-class patients had 46% 5year event-free survival and 79% 5year overall survival. All had sensitive fusion tests giving high concordance between Ig/TCR and ABL-class fusion results (21 patients, n = 257 samples, r2 = 0.9786, P < 0.0001) and Ig/TCR and IKZF1-deletion results (9 patients, n = 143 samples, r2 = 0.9661, P < 0.0001). In contrast, in BCR-ABL1 patients, Ig/TCR and BCR-ABL1 tests were discordant in 32% (40 patients, n = 346 samples, r2 = 0.4703, P < 0.0001) and IKZF1-deletion results were closer to Ig/TCR (25 patients, n = 176, r2 = 0.8631, P < 0.0001). CONCLUSIONS: MRD monitoring based on patient-specific assays detecting gene fusions or recurrent assays for IKZF1-deletions is feasible and provides good alternatives to Ig/TCR tests to monitor MRD in ABL-class ALL.
Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Proteínas de Fusão bcr-abl/genética , Humanos , Imunoglobulinas , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
Symptomatic methotrexate-related central neurotoxicity (MTX neurotoxicity) is a severe toxicity experienced during acute lymphoblastic leukemia (ALL) therapy with potential long-term neurologic complications. Risk factors and long-term outcomes require further study. We conducted a systematic, retrospective review of 1,251 consecutive Australian children enrolled on Berlin-Frankfurt-Münster or Children's Oncology Group-based protocols between 1998-2013. Clinical risk predictors for MTX neurotoxicity were analyzed using regression. A genome-wide association study (GWAS) was performed on 48 cases and 537 controls. The incidence of MTX neurotoxicity was 7.6% (n=95 of 1,251), at a median of 4 months from ALL diagnosis and 8 days after intravenous or intrathecal MTX. Grade 3 elevation of serum aspartate aminotransferase (P=0.005, odds ratio 2.31 [range, 1.28-4.16]) in induction/consolidation was associated with MTX neurotoxicity, after accounting for the only established risk factor, age ≥10 years. Cumulative incidence of CNS relapse was increased in children where intrathecal MTX was omitted following symptomatic MTX neurotoxicity (n=48) compared to where intrathecal MTX was continued throughout therapy (n=1,174) (P=0.047). Five-year central nervous system relapse-free survival was 89.2 4.6% when intrathecal MTX was ceased compared to 95.4 0.6% when intrathecal MTX was continued. Recurrence of MTX neurotoxicity was low (12.9%) for patients whose intrathecal MTX was continued after their first episode. The GWAS identified single-nucletide polymorphism associated with MTX neurotoxicity near genes regulating neuronal growth, neuronal differentiation and cytoskeletal organization (P<1x10-6). In conclusion, increased serum aspartate aminotransferase and age ≥10 years at diagnosis were independent risk factors for MTX neurotoxicity. Our data do not support cessation of intrathecal MTX after a first MTX neurotoxicity event.
Assuntos
Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células Precursoras , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Austrália , Criança , Humanos , Injeções Espinhais , Metotrexato/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de RiscoRESUMO
INTRODUCTION: One-quarter of the relapses in children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) occur very early (within 18 months, before completion of treatment), and prognosis in these patients is worse compared to cases that relapse after treatment has ended. METHODS: In this study, we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy. RESULTS: We observed a dynamic clonal evolution in all cases, with relapse almost exclusively originating from a subclone at diagnosis. We identified several driver mutations that may have influenced the outgrowth of a minor clone at diagnosis to become the major clone at relapse. For example, a minimal residual disease (MRD)-based standard-risk patient with ETV6-RUNX1-positive leukemia developed a relapse from a TP53-mutated subclone after loss of the wildtype allele. Furthermore, two patients with TCF3-PBX1-positive leukemia that developed a very early relapse carried E1099K WHSC1 mutations at diagnosis, a hotspot mutation that was recurrently encountered in other very early TCF3-PBX1-positive leukemia relapses as well. In addition to alterations in known relapse drivers, we found two cases with truncating mutations in the cohesin gene RAD21. CONCLUSION: Comprehensive genomic characterization of diagnosis-relapse pairs shows that very early relapses in BCP-ALL frequently arise from minor subclones at diagnosis. A detailed understanding of the therapeutic pressure driving these events may aid the development of improved therapies.
Assuntos
Doença Enxerto-Hospedeiro , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Evolução Clonal/genética , Genômica , Humanos , Prognóstico , RecidivaRESUMO
BACKGROUND: The prognosis for high-risk childhood acute leukaemias remains dismal and established treatment protocols often cause long-term side effects in survivors. This study aims to identify more effective and safer therapeutics for these patients. METHODS: A high-throughput phenotypic screen of a library of 3707 approved drugs and pharmacologically active compounds was performed to identify compounds with selective cytotoxicity against leukaemia cells followed by further preclinical evaluation in patient-derived xenograft models. RESULTS: Auranofin, an FDA-approved agent for the treatment of rheumatoid arthritis, was identified as exerting selective anti-cancer activity against leukaemia cells, including patient-derived xenograft cells from children with high-risk ALL, versus solid tumour and non-cancerous cells. It induced apoptosis in leukaemia cells by increasing reactive oxygen species (ROS) and potentiated the activity of the chemotherapeutic cytarabine against highly aggressive models of infant MLL-rearranged ALL by enhancing DNA damage accumulation. The enhanced sensitivity of leukaemia cells towards auranofin was associated with lower basal levels of the antioxidant glutathione and higher baseline ROS levels compared to solid tumour cells. CONCLUSIONS: Our study highlights auranofin as a well-tolerated drug candidate for high-risk paediatric leukaemias that warrants further preclinical investigation for application in high-risk paediatric and adult acute leukaemias.
Assuntos
Auranofina/administração & dosagem , Citarabina/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Auranofina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Citarabina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Bibliotecas de Moléculas Pequenas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identify B-ALL blast-secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two-gene expression signature (CKLF and IL1B) that allowed identification of high-risk patients at diagnosis. This two-gene expression signature enhances the predictive value of current at diagnosis or end-of-induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk-adapted therapies.
Assuntos
Quimiocinas/genética , Interleucina-1beta/genética , Proteínas com Domínio MARVEL/genética , Aprendizado de Máquina/estatística & dados numéricos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Doença Aguda , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Valor Preditivo dos Testes , Recidiva , Medição de Risco/normas , Análise de Sobrevida , Transcriptoma/genética , Falha de TratamentoRESUMO
BACKGROUND: Presenting features, biology and outcome for childhood leukaemia are known to vary by ethnic origin, geographic location and socioeconomic group. This study aimed to compare presentation patterns, follow-up and clinical outcomes in Indigenous and non-Indigenous children with acute leukaemia in Australia, and to assess the impact of remoteness and area-based socioeconomic disadvantage on outcome. METHODS: A retrospective review of children aged between 1 day and 18 years who were diagnosed with acute leukaemia in South Australia (SA), Northern Territory (NT) and Western Australia (WA) between 2009 and 2018 was performed. Data were collected from children treated at the Women's and Children's Hospital, Adelaide and Perth Children's Hospital. RESULTS: Analysis of 455 children treated for acute leukaemia showed that children from remote/very remote localities had inferior overall survival (p = .004). Five-year overall survival was 91.7% (95% CI: 87.9-94.3%) for children with acute lymphoblastic leukaemia (ALL) and 69.8% (56.7-79.5%) for acute myeloid leukaemia (AML). A larger proportion of Indigenous children from SA/NT were diagnosed with AML compared to non-Indigenous children (60.0% vs. 14.4%, p = .001). Indigenous children were less likely to be enrolled on clinical trials (34.5% vs. 53.1%, p = .03) and more likely to be lost to follow-up (26.1% vs. 9.2%, p = .009). CONCLUSION: Geographic remoteness of residence is associated with inferior overall survival for Australian children with leukaemia. Indigenous children with acute leukaemia suffer from disparities in outcomes. These findings provide evidence to guide national policy in supporting appropriate resource allocation to overcome the challenges faced by children within these groups.
Assuntos
Leucemia/epidemiologia , Adolescente , Austrália/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Leucemia/terapia , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/terapia , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudos Retrospectivos , População Rural , Análise de SobrevidaRESUMO
We report on the Australian experience of blinatumomab for treatment of 24 children with relapsed/refractory precursor B-cell acute lymphoblastic leukaemia (B-ALL) and high-risk genetics, resulting in a minimal residual disease (MRD) response rate of 58%, 2-year progression-free survival (PFS) of 39% and 2-year overall survival of 63%. In total, 83% (n = 20/24) proceeded to haematopoietic stem cell transplant, directly after blinatumomab (n = 12) or following additional salvage therapy (n = 8). Four patients successfully received CD19-directed chimeric antigen receptor T-cell therapy despite prior blinatumomab exposure. Inferior 2-year PFS was associated with MRD positivity (20%, n = 15) and in KMT2A-rearranged infants (15%, n = 9). Our findings highlight that not all children with relapsed/refractory B-ALL respond to blinatumomab and factors such as blast genotype may affect prognosis.
Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Austrália , Criança , Feminino , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Around 10% of acute leukemias harbor a rearrangement of the MLL/KMT2A gene, and the presence of this translocation results in a highly aggressive, therapy-resistant leukemia subtype with survival rates below 50%. There is a high unmet need to identify safer and more potent therapies for MLL-rearranged (MLL-r) leukemia that can be combined with established chemotherapeutics to decrease treatment-related toxicities. The curaxin, CBL0137, has demonstrated nongenotoxic anticancer and chemopotentiating effects in a number of preclinical cancer models and is currently in adult Phase I clinical trials for solid tumors and hematological malignancies. The aim of our study was to investigate whether CBL0137 has potential as a therapeutic and chemopotentiating compound in MLL-r leukemia through a comprehensive analysis of its efficacy in preclinical models of the disease. CBL0137 decreased the viability of a panel of MLL-r leukemia cell lines (n = 12) and xenograft cells derived from patients with MLL-r acute lymphoblastic leukemia (ALL, n = 3) in vitro with submicromolar IC50s. The small molecule drug was well-tolerated in vivo and significantly reduced leukemia burden in a subcutaneous MV4;11 MLL-r acute myeloid leukemia model and in patient-derived xenograft models of MLL-r ALL (n = 5). The in vivo efficacy of standard of care drugs used in remission induction for pediatric ALL was also potentiated by CBL0137. CBL0137 exerted its anticancer effect by trapping Facilitator of Chromatin Transcription (FACT) into chromatin, activating the p53 pathway and inducing an Interferon response. Our findings support further preclinical evaluation of CBL0137 as a new approach for the treatment of MLL-r leukemia.
Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Antineoplásicos/uso terapêutico , Apoptose/genética , Carbazóis/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Estimativa de Kaplan-Meier , Leucemia Aguda Bifenotípica/diagnóstico , Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/mortalidade , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Elongação da Transcrição/genética , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Total body irradiation (TBI)/cyclophosphamide (CY) is a standard-of-care conditioning regimen in allogeneic hematopoietic stem cell transplant (HSCT) for pediatric acute lymphoblastic leukemia (ALL). This study sought to identify whether the addition of thiotepa (TT) to TBI/CY improves HSCT outcomes for pediatric patients with ALL. A retrospective analysis was performed on 347 pediatric ALL patients who underwent HSCT between 1995 and 2015, with 242 receiving TBI/CY/TT and 105 patients receiving TBI/CY. There were no statistical differences in age, donor source, or complete remission status between the 2 groups. Comparison of the TBI/CY/TT versus TBI/CY groups demonstrated no difference in transplant-related mortality at 1 (11% versus 11%), 5 (13% versus 16%), or 10 years (16% versus 16%). There was lower relapse in the TBI/CY/TT group at 1 (14% versus 26%), 5 (24% versus 36%), 10 (26% versus 37%), and 15 years (26% versus 37%) (P= .02) but was not statistically significant on multivariate analysis. The TBI/CY/TT group showed a trend toward improved disease-free survival (DFS) at 5 (59% versus 47%), 10 (56% versus 46%), and 15 years (49% versus 40%) (P = .05) but was not statistically significant on multivariate analysis. Comparing overall survival at 5 (62% versus 53%), 10 (57% versus 50%), and 15 years (50% versus 44%) demonstrated no statistical difference between the 2 groups. The addition of thiotepa to TBI/CY demonstrated no increase in transplant-related mortality for pediatric ALL HSCT but was unable to demonstrate significant benefit in disease control. Minimal residual disease status remained the key risk factor impacting both relapse and DFS. More studies are warranted to better clarify the benefits of using thiotepa in conditioning for ALL HSCT.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Ciclofosfamida/uso terapêutico , Intervalo Livre de Doença , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudos Retrospectivos , Tiotepa , Condicionamento Pré-Transplante , Irradiação Corporal TotalRESUMO
BACKGROUND: While current chemotherapy has increased cure rates for children with acute lymphoblastic leukaemia (ALL), the largest number of relapsing patients are still stratified as medium risk (MR) at diagnosis (50-60%). This highlights an opportunity to develop improved relapse-prediction models for MR patients. We hypothesised that bone marrow from MR patients who eventually relapsed would regrow faster in a patient-derived xenograft (PDX) model after induction chemotherapy than samples from patients in long-term remission. METHODS: Diagnostic bone marrow aspirates from 30 paediatric MR-ALL patients (19 who relapsed, 11 who experienced remission) were inoculated into immune-deficient (NSG) mice and subsequently treated with either control or an induction-type regimen of vincristine, dexamethasone, and L-asparaginase (VXL). Engraftment was monitored by enumeration of the proportion of human CD45+ cells (%huCD45+) in the murine peripheral blood, and events were defined a priori as the time to reach 1% huCD45+, 25% huCD45+ (TT25%) or clinical manifestations of leukaemia (TTL). RESULTS: The TT25% value significantly predicted MR patient relapse. Mutational profiles of PDXs matched their tumours of origin, with a clonal shift towards relapse observed in one set of VXL-treated PDXs. CONCLUSIONS: In conclusion, establishing PDXs at diagnosis and subsequently applying chemotherapy has the potential to improve relapse prediction in paediatric MR-ALL.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adolescente , Animais , Asparaginase/administração & dosagem , Criança , Pré-Escolar , Dexametasona/administração & dosagem , Feminino , Xenoenxertos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Valor Preditivo dos Testes , Recidiva , Vincristina/administração & dosagemRESUMO
ABL-class fusions other than BCR-ABL1 characterize around 2-3% of precursor B-cell acute lymphoblastic leukemia. Case series indicated that patients suffering from these subtypes have a dismal outcome and may benefit from the introduction of tyrosine kinase inhibitors. We analyzed clinical characteristics and outcome of 46 ABL-class fusion positive cases other than BCR-ABL1 treated according to AIEOP-BFM (Associazione Italiana di Ematologia-Oncologia Pediatrica-Berlin-Frankfurt-Münster) ALL 2000 and 2009 protocols; 13 of them received a tyrosine kinase inhibitor (TKI) during different phases of treatment. ABL-class fusion positive cases had a poor early treatment response: minimal residual disease levels of ≥5×10-4 were observed in 71.4% of patients after induction treatment and in 51.2% after consolidation phase. For the entire cohort of 46 cases, the 5-year probability of event-free survival was 49.1+8.9% and that of overall survival 69.6+7.8%; the cumulative incidence of relapse was 25.6+8.2% and treatment-related mortality (TRM) 20.8+6.8%. One out of 13 cases with TKI added to chemotherapy relapsed while eight of 33 cases without TKI treatment suffered from relapse, including six in 17 patients who had not received hematopoietic stem cell transplantation. Stem cell transplantation seems to be effective in preventing relapses (only three relapses in 25 patients), but was associated with a very high TRM (6 patients). These data indicate a major need for an early identification of ABL-class fusion positive acute lymphoblastic leukemia cases and to establish a properly designed, controlled study aimed at investigating the use of TKI, the appropriate chemotherapy backbone and the role of hematopoietic stem cell transplantation. (Registered at: clinicaltrials.gov identifier: NTC00430118, NCT00613457, NCT01117441).
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B , Criança , Humanos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico , RecidivaRESUMO
BACKGROUND: The aim of this study was to improve the predictive power of patient-derived xenografts (PDXs, also known as mouse avatars) to more accurately reflect outcomes of clofarabine-based treatment in pediatric acute lymphoblastic leukemia (ALL) patients. PROCEDURE: Pharmacokinetic (PK) studies were conducted using clofarabine at 3.5 to 15 mg/kg in mice. PDXs were established from relapsed/refractory ALL patients who exhibited good or poor responses to clofarabine. PDX engraftment and response to clofarabine (either as a single agent or in combinations) were assessed based on stringent objective response measures modeled after the clinical setting. RESULTS: In naïve immune-deficient NSG mice, we determined that a clofarabine dose of 3.5 mg/kg resulted in systemic exposures equivalent to those achieved in pediatric ALL patients treated with clofarabine-based regimens. This dose was markedly lower than the doses of clofarabine used in previously reported preclinical studies (typically 30-60 mg/kg) and, when scheduled consistent with the clinical regimen (daily × 5), resulted in 34-fold lower clofarabine exposures. Using a well-tolerated clofarabine/etoposide/cyclophosphamide combination regimen, we then found that the responses of PDXs better reflected the clinical responses of the patients from whom the PDXs were derived. CONCLUSIONS: This study has identified an in vivo clofarabine treatment regimen that reflects the clinical responses of relapsed/refractory pediatric ALL patients. This regimen could be used prospectively to identify patients who might benefit from clofarabine-based treatment. Our findings are an important step toward individualizing prospective patient selection for the use of clofarabine in relapsed/refractory pediatric ALL patients and highlight the need for detailed PK evaluation in murine PDX models.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medicina de Precisão/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antimetabólitos Antineoplásicos/farmacologia , Clofarabina/farmacologia , Ciclofosfamida/farmacologia , Etoposídeo/farmacologia , Humanos , CamundongosRESUMO
We used the genomic breakpoint between BCR and ABL1 genes for the DNA-based monitoring of minimal residual disease (MRD) in 48 patients with childhood acute lymphoblastic leukemia (ALL). Comparing the results with standard MRD monitoring based on immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements and with quantification of IKZF1 deletion, we observed very good correlation for the methods in a majority of patients; however, >20% of children (25% [8/32] with minor and 12.5% [1/8] with major-BCR-ABL1 variants in the consecutive cohorts) had significantly (>1 log) higher levels of BCR-ABL1 fusion than Ig/TCR rearrangements and/or IKZF1 deletion. We performed cell sorting of the diagnostic material and assessed the frequency of BCR-ABL1-positive cells in various hematopoietic subpopulations; 12% to 83% of non-ALL B lymphocytes, T cells, and/or myeloid cells harbored the BCR-ABL1 fusion in patients with discrepant MRD results. The multilineage involvement of the BCR-ABL1-positive clone demonstrates that in some patients diagnosed with BCR-ABL1-positive ALL, a multipotent hematopoietic progenitor is affected by the BCR-ABL1 fusion. These patients have BCR-ABL1-positive clonal hematopoiesis resembling a chronic myeloid leukemia (CML)-like disease manifesting in "lymphoid blast crisis." The biological heterogeneity of BCR-ABL1-positive ALL may impact the patient outcomes and optimal treatment (early stem cell transplantation vs long-term administration of tyrosine-kinase inhibitors) as well as on MRD testing. Therefore, we recommend further investigations on CML-like BCR-ABL1-positive ALL.
Assuntos
Quebra Cromossômica , Proteínas de Fusão bcr-abl/genética , Genoma Humano , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Criança , Pré-Escolar , Deleção de Genes , Hematopoese , Humanos , Fator de Transcrição Ikaros/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Contagem de Leucócitos , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Receptores de Antígenos de Linfócitos T/genética , Resultado do TratamentoRESUMO
BACKGROUND: Zinc-finger protein 384 (ZNF384) fusions are an emerging subtype of precursor B-cell acute lymphoblastic leukaemia (pre-B-ALL) and here we further characterised their prevalence, survival outcomes and transcriptome. METHODS: Bone marrow mononuclear cells from 274 BCR-ABL1-negative pre-B-ALL patients were immunophenotyped and transcriptome molecularly characterised. Transcriptomic data was analysed by principal component analysis and gene-set enrichment analysis to identify gene and pathway expression changes. RESULTS: We exclusively detect E1A-associated protein p300 (EP300)-ZNF384 in 5.7% of BCR-ABL1-negative adolescent/young adult (AYA)/adult pre-B-ALL patients. EP300-ZNF384 patients do not appear to be a high-risk subgroup. Transcriptomic analysis revealed that EP300-ZNF384 samples have a distinct gene expression profile that results in the up-regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and cell adhesion pathways and down-regulation of cell cycle and DNA repair pathways. CONCLUSIONS: Importantly, this report contributes to a better overview of the incidence of EP300-ZNF384 patients and show that they have a distinct gene signature with concurrent up-regulation of JAK-STAT pathway, reduced expression of B-cell regulators and reduced DNA repair capacity.
Assuntos
Proteína p300 Associada a E1A/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transativadores/genética , Transcriptoma , Adolescente , Adulto , Criança , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Frequência do Gene , Genes abl/genética , Humanos , Janus Quinases/metabolismo , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida , Adulto JovemRESUMO
To prevent relapse, high risk paediatric acute lymphoblastic leukaemia (ALL) is treated very intensively. However, most patients who eventually relapse have standard or medium risk ALL with low minimal residual disease (MRD) levels. We analysed recurrent microdeletions and other clinical prognostic factors in a cohort of 475 uniformly treated non-high risk precursor B-cell ALL patients with the aim of better predicting relapse and refining risk stratification. Lower relapse-free survival at 7 years (RFS) was associated with IKZF1 intragenic deletions (P < 0·0001); P2RY8-CRLF2 gene fusion (P < 0·0004); Day 33 MRD>5 × 10-5 (P < 0·0001) and High National Cancer Institute (NCI) risk (P < 0·0001). We created a predictive model based on a risk score (RS) for deletions, MRD and NCI risk, extending from an RS of 0 (RS0) for patients with no unfavourable factors to RS2 + for patients with 2 or 3 high risk factors. RS0, RS1, and RS2 + groups had RFS of 93%, 78% and 49%, respectively, and overall survival (OS) of 99%, 91% and 71%. The RS provided greater discrimination than MRD-based risk stratification into standard (89% RFS, 96% OS) and medium risk groups (79% RFS, 91% OS). We conclude that this RS may enable better early therapeutic stratification and thus improve cure rates for childhood ALL.
Assuntos
Deleção Cromossômica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Deleção de Sequência , Adolescente , Fatores Etários , Biomarcadores Tumorais , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Prognóstico , Modelos de Riscos Proporcionais , Recidiva , Medição de Risco , Fatores de RiscoRESUMO
Somatic genetic abnormalities are initiators and drivers of disease and have proven clinical utility at initial diagnosis. However, the genetic landscape and its clinical utility at relapse are less well understood and have not been studied comprehensively. We analyzed cytogenetic data from 427 children with relapsed B-cell precursor ALL treated on the international trial, ALLR3. Also we screened 238 patients with a marrow relapse for selected copy number alterations (CNAs) and mutations. Cytogenetic risk groups were predictive of outcome postrelapse and survival rates at 5 years for patients with good, intermediate-, and high-risk cytogenetics were 68%, 47%, and 26%, respectively (P < .001). TP53 alterations and NR3C1/BTG1 deletions were associated with a higher risk of progression: hazard ratio 2.36 (95% confidence interval, 1.51-3.70, P < .001) and 2.15 (1.32-3.48, P = .002). NRAS mutations were associated with an increased risk of progression among standard-risk patients with high hyperdiploidy: 3.17 (1.15-8.71, P = .026). Patients classified clinically as standard and high risk had distinct genetic profiles. The outcome of clinical standard-risk patients with high-risk cytogenetics was equivalent to clinical high-risk patients. Screening patients at relapse for key genetic abnormalities will enable the integration of genetic and clinical risk factors to improve patient stratification and outcome. This study is registered at www.clinicaltrials.org as #ISCRTN45724312.