Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 326(1): 90-102, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907655

RESUMO

We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Idarubicina/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
2.
Artigo em Inglês | MEDLINE | ID: mdl-26167194

RESUMO

The physiologic stress induced by physical activity is reflected in immune system perturbations, oxidative stress, muscle injury, and inflammation. We investigated the effect of astaxanthin (Asx) supplementation on salivary IgA (sIgA) and oxidative stress status in plasma, along with changes in biochemical parameters and total/differential white cell counts. Forty trained male soccer players were randomly assigned to Asx and placebo groups. Asx group was supplemented with 4 mg of Asx. Saliva and blood samples were collected at the baseline and after 90 days of supplementation in preexercise conditions. We observed a rise of sIgA levels at rest after 90 days of Asx supplementation, which was accompanied with a decrease in prooxidant-antioxidant balance. The plasma muscle enzymes levels were reduced significantly by Asx supplementation and by regular training. The increase in neutrophil count and hs-CRP level was found only in placebo group, indicating a significant blunting of the systemic inflammatory response in the subjects taking Asx. This study indicates that Asx supplementation improves sIgA response and attenuates muscle damage, thus preventing inflammation induced by rigorous physical training. Our findings also point that Asx could show significant physiologic modulation in individuals with mucosal immunity impairment or under conditions of increased oxidative stress and inflammation.

3.
PLoS One ; 9(4): e94374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714637

RESUMO

The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3ß or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Citarabina/farmacologia , Leucemia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA