Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(72): e202303017, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37766651

RESUMO

Owing to its hydrophobic properties and reactivity, triarylphosphines (PAr3 ) are promising precursors for the development of new amphiphiles. However, an efficient and reliable synthetic method for amphiphiles based on highly hydrophobic PAr3 is still required. Herein, a straightforward transformation of highly hydrophobic PAr3 into amphiphiles via the Staudinger reaction is reported. By simply mixing PAr3 and a hydrophilic trichlorophenyl azide containing two hydrophilic chains, amphiphiles bearing a N=P bond (i. e., an azaylide moiety) were quantitatively formed. The obtained azaylide-based amphiphiles were remarkably water-soluble, enabling their spontaneous self-assembly into 2 nm-sized micelles composed of 4-5 molecules in water with a low critical micelle concentration (up to 0.05 mM or less) due to the effective intermolecular interactions among the hydrophobic surfaces. Although the azaylide moiety is easily hydrolyzed in the presence of water, the azaylide in the amphiphiles displayed notable stability in water even at 60 h, which stems from the LUMO modulation induced by the presence of three electron-withdrawing chloro groups and two twisted alkoxycarbonyl groups, according to DFT calculations. An amphiphile having a large hydrophobic surface solubilized various hydrophobic organic dyes through efficient intermolecular interactions, resulting in the dyes exhibiting either monomer or excimer emissions in water.

2.
Methods ; 191: 23-31, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32334080

RESUMO

Genetically modified mouse models are essential for in vivo investigation of gene function and human disease research. Targeted mutations can be introduced into mouse embryos using genome editing technology such as CRISPR-Cas. Although mice with small indel mutations can be produced, the production of mice carrying large deletions or gene fragment knock-in alleles remains inefficient. We introduced the nuclear localisation property of Cdt1 protein into the CRISPR-Cas system for efficient production of genetically engineered mice. Mouse Cdt1-connected Cas9 (Cas9-mC) was present in the nucleus of HEK293T cells and mouse embryos. Cas9-mC induced a bi-allelic full deletion of Dmd, GC-rich fragment knock-in, and floxed allele knock-in with high efficiency compared to standard Cas9. These results indicate that Cas9-mC is a useful tool for producing mouse models carrying targeted mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Zigoto
3.
J Org Chem ; 86(1): 709-715, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295763

RESUMO

The reaction of various optically pure N-C axially chiral quinazolin-4-one derivatives with Lawesson's reagent proceeded without a marked decrease in optical purity to give optically active quinazoline-4-thione derivatives (93-99% ee) possessing a high rotational barrier in good yields.

4.
Angew Chem Int Ed Engl ; 60(33): 17915-17919, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34018299

RESUMO

Catalyst- and reagent-free reactions are powerful tools creating various functional molecules and materials. However, such chemical bonds are usually hydrolysable or require specific functional groups, which limits their use in aqueous media. Herein, we report the development of new amphiphiles through the Staudinger reaction. Simple mixing of chlorinated aryl azide with a hydrophilic moiety and various triarylphosphines (PAr3) gave rise to azaylide-based amphiphiles NPAr3, rapidly and quantitatively. The obtained NPAr3 formed ca. 2 nm-sized spherical aggregates (NPAr3)n in water. The hydrolysis of NPAr3 was significantly suppressed as compared with those of non-chlorinated amphiphiles nNPAr3. Computational studies revealed that the stability is mainly governed by the decrease in LUMO around the phosphorus atom owing to the o-substituted halogen groups. Furthermore, hydrophobic dyes such as Nile red and BODIPY were encapsulated by the spherical aggregates (NPAr3)n in water.

5.
Open Biol ; 14(4): 240007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565160

RESUMO

Functional regions that regulate biological phenomena are interspersed throughout eukaryotic genomes. The most definitive approach for identifying such regions is to confirm the phenotype of cells or organisms in which specific regions have been mutated or removed from the genome. This approach is invaluable for the functional analysis of genes with a defined functional element, the protein-coding sequence. By contrast, no functional analysis platforms have been established for the study of cis-elements or microRNA cluster regions consisting of multiple microRNAs with functional overlap. Whole-genome mutagenesis approaches, such as via N-ethyl-N-nitrosourea and gene trapping, have greatly contributed to elucidating the function of coding genes. These methods almost never induce deletions of genomic regions or multiple mutations within a narrow region. In other words, cis-elements and microRNA clusters cannot be effectively targeted in such a manner. Herein, we established a novel region-specific random mutagenesis method named CRISPR- and transposase-based regional mutagenesis (CTRL-mutagenesis). We demonstrate that CTRL-mutagenesis randomly induces diverse mutations within target regions in murine embryonic stem cells. Comparative analysis of mutants harbouring subtly different mutations within the same region would facilitate the further study of cis-element and microRNA clusters.


Assuntos
Edição de Genes , MicroRNAs , Animais , Camundongos , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Mutagênese , MicroRNAs/genética
6.
J Biochem ; 170(4): 453-461, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33982090

RESUMO

Proximity-dependent biotin identification (BioID) is a useful method to identify unknown protein-protein interactions. Few reports have described genetically engineered knock-in mouse models for in vivo BioID. Thus, little is known about the proper method for biotin administration and which tissues are applicable. Here, we established a BioID knock-in mouse model of Brain and Muscle ARNT-Like 1 (BMAL1) and the BirA biotin ligase with R118G mutation (BirA*). The BMAL1-BioID mouse model was used to investigate the effect of biotin diet feeding on protein biotinylation in several tissues. The BMAL1-BirA* fusion protein-retained proper intracellular localization of BMAL1 and binding to CLOCK protein in HEK293T cells. A biotin labelling assay in mouse embryonic fibroblasts revealed the protein biotinylation activity of BMAL1-BirA* expressed in knock-in mouse cells depending on biotin supplementation. Lastly, feeding a 0.5% biotin diet for 7 days induced protein biotinylation in the brain, heart, testis and liver of BMAL1-BioID mice without adverse effects on spermatogenesis. In the kidney, the biotin diet increased biotinylated protein levels in BMAL1-BioID and control mice, suggesting the existence of endogenous biotinylation activity. These results provide valuable information to optimize the in vivo BioID procedure.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Biotina/farmacologia , Mapeamento de Interação de Proteínas/métodos , Animais , Biotina/administração & dosagem , Biotinilação/métodos , Encéfalo/metabolismo , Proteínas CLOCK/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Dieta/métodos , Fibroblastos/metabolismo , Genótipo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Músculos/metabolismo , Coloração e Rotulagem/métodos
7.
Elife ; 102021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949947

RESUMO

In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.


Assuntos
Proteínas de Ciclo Celular/genética , Gastrulação/genética , Expressão Gênica , Proteínas Ribossômicas/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenótipo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Regulação para Cima
8.
Sci Rep ; 10(1): 9060, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493902

RESUMO

F1 hybrid progenies between related subspecies often show hybrid sterility (HS) or inviability. HS is caused by failure of meiotic chromosome synapsis and sex body formation in house mouse. Previous studies identified two HS critical genomic regions named Hstx2 on Chr X and Hst1 on Chr 17 by murine forward genetic approaches. HS gene on Hst1 was reported to be Prdm9. Intersubspecific polymorphisms of Prdm9 induce HS in hybrids, and Prdm9 null mutation leads to sterility in the inbred strain. However, HS gene on Hstx2 remains unknown. Here, using knock-out studies, we showed that HS candidate genes on Hstx2 are not individually essential for spermatogenesis in B6 strain. We examined 12 genes on Hstx2: Ctag2, 4930447F04Rik, Mir743, Mir465d, Mir465c-2, Mir465b-1, Mir465c-1, Mir465, Gm1140, Gm14692, 4933436I01Rik, and Gm6812. These genes were expressed in adult testes, and showed intersubspecific polymorphisms on expressed regions. This first reverse genetic approach to identify HS gene on Hstx2 suggested that the loss of function of any one HS candidate gene does not cause complete sterility, unlike Prdm9. Thus, the mechanism(s) of HS by the HS gene on Hstx2 might be different from that of Prdm9.


Assuntos
Infertilidade/genética , Espermatogênese/genética , Cromossomo X/genética , Animais , Cruzamentos Genéticos , Feminino , Genoma/genética , Histona-Lisina N-Metiltransferase/genética , Hibridização Genética/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , MicroRNAs/genética , Mutação/genética , Genética Reversa/métodos
9.
Exp Anim ; 68(4): 499-509, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31189761

RESUMO

Knockout mouse models are commonly used in developmental biology to investigate the functions of specific genes, and the knowledge obtained in such models has yielded insights into the molecular mechanisms underlying developmental processes. Gastrulation is the most dynamic process in embryogenesis during which differentiation into three germ layers occurs. However, the functions of genes involved in gastrulation are not completely understood. One major reason for this is the technical difficulty of embryo analysis to understand germ layer location. We have generated three reporter mouse strains in which the germ layers are distinguished by different fluorescent reporters. Using CRISPR/Cas9 genome editing in mouse zygotes, the fluorescent reporter genes, EGFP, tdTomato, and TagBFP including 2A peptide sequences were knocked into the appropriate sites before the stop codon of the Sox17 (endoderm marker), Otx2 (ectoderm marker), and T (mesoderm marker) genes, respectively. Founder mice were successfully generated in the Sox17-2A-EGFP, Otx2-2A-tdTomato, and T-2A-TagBFP knockin reporter strains. Further, homozygous knockin mice of all strains appeared morphologically normal and were fertile. On stereomicroscopic analysis, fluorescent signals were detected in a germ layer-specific manner from heterozygous embryos at embryonic day (E) 6.5-8.5 in all strains, and were immunohistochemically demonstrated to match their respective germ layer-specific marker protein at E7.5. Taken together, these observations suggest that the Sox17-2A-EGFP, Otx2-2A-tdTomato, and T-2A-TagBFP knockin reporter mice may be useful for comprehensive analysis of gene function in germ layer formation.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/embriologia , Técnicas de Introdução de Genes/métodos , Genes Reporter , Camadas Germinativas/embriologia , Animais , Proteínas Luminescentes/administração & dosagem , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA