Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929159

RESUMO

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Assuntos
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Plant Cell Physiol ; 65(6): 975-985, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38147500

RESUMO

DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.


Assuntos
Anabaena , Proteínas de Bactérias , Ácidos Graxos Dessaturases , Synechocystis , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Synechocystis/enzimologia , Synechocystis/genética , Anabaena/enzimologia , Anabaena/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Sequência de Aminoácidos
3.
Plant Cell Physiol ; 64(7): 803-813, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133246

RESUMO

Oleaginous microalgae are gaining great attention as feedstock for biofuels because of their substantial accumulation capacity for neutral lipids in the cytosolic compartment called the lipid droplet (LD). Understanding the regulatory mechanism of neutral lipid accumulation and degradation, which is mediated by LD-associated proteins, is an important issue in improving lipid productivity. However, LD-associated proteins vary among species and are waiting to be characterized in many microalgae. Stramenopile-type LD protein (StLDP) was previously identified as a primary LD protein in the marine diatom Phaeodactylum tricornutum. We produced a knockout mutant of StLDP by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing. Also, we tried to complement this mutant by expressing recognition site-modified StLDP (RSM-StLDP), which is designed to avoid an attack by Cas9 nuclease expressing in the mutant. The RSM-StLDP:enhanced green fluorescent protein was localized to both LDs and the outer chloroplast-endoplasmic reticulum. The decrease in the LD number per cell, increase in LD size and no alteration of neutral lipid content in the mutant under nitrogen deficiency clearly indicate that StLDP acts as an LD scaffold protein. The number of LDs per cell increased in the complemented strain compared to wild-type (WT) cells. The LD morphology in the mutant is probably over-rescued in the complemented strain by the strong function of the nitrate reductase promoter, which is also supported by high neutral lipid content in the complemented strain. The growth of stldp mutant showed a long lag phase relative to WT cells, suggesting that the low surface-to-volume ratio of fused LD decreased the efficiency of LD hydrolysis during the initial growth phase.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Edição de Genes , Lipídeos , Metabolismo dos Lipídeos/genética
4.
Plant Physiol ; 184(1): 82-96, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32669420

RESUMO

Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Especificidade por Substrato , Nicotiana/genética , Nicotiana/metabolismo
5.
Photosynth Res ; 139(1-3): 173-183, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29943360

RESUMO

Recently, microalgae have attracted attention as sources of biomass energy. However, fatty acids from the microalgae are mainly unsaturated and show low stability in oxygenated environments, due to oxidation of the double bonds. The branched-chain fatty acid, 10-methyl stearic acid, is synthesized from oleic acid in certain bacteria; the fatty acid is saturated, but melting point is low. Thus, it is stable in the presence of oxygen and is highly fluid. We previously demonstrated that BfaA and BfaB in Mycobacterium chlorophenolicum are involved in the synthesis of 10-methyl stearic acid from oleic acid. In this study, as a consequence of the introduction of bfaA and bfaB into the cyanobacterium, Synechocystis sp. PCC 6803, we succeeded in producing 10-methyl stearic acid, with yields up to 4.1% of the total fatty acid content. The synthesis of 10-methyl stearic acid in Synechocystis cells did not show a significant effect on photosynthetic activity, but the growth of the cells was retarded at 34 °C. We observed that the synthesis of 10-methylene stearic acid, a precursor of 10-methyl stearic acid, had an inhibitory effect on the growth of the transformants, which was mitigated under microoxic conditions. Eventually, the amount of 10-methyl stearic acid present in the sulfoquinovosyl diacylglycerol and phosphatidylglycerol of the transformants was remarkably higher than that in the monogalactosyldiacylglycerol and digalactosyldiacylglycerol. Overall, we successfully synthesized 10-methyl stearic acid in the phototroph, Synechocystis, demonstrating that it is possible to synthesize unique modified fatty acids via photosynthesis that are not naturally produced in photosynthetic organisms.


Assuntos
Cianobactérias/metabolismo , Ácidos Esteáricos/metabolismo , Mycobacterium/metabolismo , Ácido Oleico/metabolismo , Synechocystis/metabolismo
6.
Biochim Biophys Acta ; 1861(9 Pt A): 980-987, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27263419

RESUMO

Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain.


Assuntos
Cianobactérias/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/biossíntese , Sequência de Aminoácidos , Biomassa , Cianobactérias/genética , Ciclopropanos , Escherichia coli/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos/genética , Lipídeos , Fotossíntese/genética , Synechocystis/genética , Synechocystis/metabolismo
7.
Plant Cell Physiol ; 57(2): 397-406, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26738549

RESUMO

Various kinds of organisms, including microalgae, accumulate neutral lipids in distinct intracellular compartments called lipid droplets. Generally, lipid droplets are generated from the endoplasmic reticulum, and particular proteins localize on their surface. Some of these proteins function as structural proteins to prevent fusion between the lipid droplets, and the others could have an enzymatic role or might be involved in intracellular membrane trafficking. However, information about lipid droplet proteins in microalgae is scarce as compared with that in animals and land plants. We focused on the oil-producing, marine, pennate diatom Phaeodactylum tricornutum that forms lipid droplets during nitrogen deprivation and we investigated the proteins located on the lipid droplets. After 6 d of cultivation in a nitrate-deficient medium, the mature lipid droplets were isolated by sucrose density gradient centrifugation. Proteomic analyses revealed five proteins, with Stramenopile-type lipid droplet protein (StLDP) being the most abundant protein in the lipid droplet fraction. Although the primary sequence of StLDP did not have homology to any known lipid droplet proteins, StLDP had a central hydrophobic domain. This structural feature is also detected in oleosin of land plants and in lipid droplet surface protein (LDSP) of Nannochloropsis species. As a proline knot motif of oleosin, conservative proline residues existed in the hydrophobic domain. StLDP was up-regulated during nitrate deprivation, and fluctuations of StLDP expression levels corresponded to the size of the lipid droplets.


Assuntos
Organismos Aquáticos/metabolismo , Diatomáceas/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Diatomáceas/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica , Proteínas de Membrana/química , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
J Bacteriol ; 197(4): 676-87, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25313394

RESUMO

Photoautotrophic bacteria have developed mechanisms to maintain K(+) homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K(+) uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K(+) (Kdp). The contributions of each of these K(+) transport systems to cellular K(+) homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K(+) uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K(+) uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K(+) depletion. Correspondingly, Kdp-mediated K(+) uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K(+) required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K(+) concentration under conditions of limited K(+) in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K(+) availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K(+) levels under fluctuating environmental conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Synechocystis/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Óperon , Potássio/metabolismo , Synechocystis/genética
9.
Proteomics ; 15(23-24): 4145-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25914246

RESUMO

Lipid body (LB) is recognized as the cellular carbon and energy storage organelle in many organisms. LBs have been observed in the marine haptophyte alga Tisochrysis lutea that produces special lipids such as long-chain (C37 -C40) ketones (alkenones) with 2-4 trans-type double bonds. In this study, we succeeded in developing a modified method to isolate LB from T. lutea. Purity of isolated LBs was confirmed by the absence of chlorophyll auto-fluorescence and no contamination of the most abundant cellular protein ribulose-1,5-bisphosphate carboxylase/oxygenase. As alkenones predominated in the LB by GC-MS analysis, the LB can be more appropriately named as "alkenone body (AB)." Extracted AB-containing proteins were analyzed by the combination of 1DE (SDS-PAGE) and MS/MS for confident protein identification and annotated using BLAST tools at National Center for Biotechnology Information. Totally 514 proteins were identified at the maximum. The homology search identified three major proteins, V-ATPase, a hypothetical protein EMIHUDRAFT_465517 found in other alkenone-producing haptophytes, and a lipid raft-associated SPFH domain-containing protein. Our data suggest that AB of T. lutera is surrounded by a lipid membrane originating from either the ER or the ER-derived four layer-envelopes chloroplast and function as the storage site of alkenones and alkenes.


Assuntos
Haptófitas/metabolismo , Cetonas/metabolismo , Proteômica , Haptófitas/genética
10.
Biochim Biophys Acta ; 1842(10): 1451-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046625

RESUMO

The coccolithophorid Emiliania huxleyi is a bloom-forming marine phytoplankton thought to play a key role as a biological pump that transfers carbon from the surface to the bottom of the ocean, thus contributing to the global carbon cycle. This alga is also known to accumulate a variety of polyunsaturated fatty acids. At 25°C, E. huxleyi produces mainly 14:0, 18:4n-3, 18:5n-3 and 22:6n-3. When the cells were transferred from 25°C to 15°C, the amount of unsaturated fatty acids, i.e. 18:1n-9, 18:3n-3 and 18:5n-3, gradually increased. Among the predicted desaturase genes whose expression levels were up-regulated at low temperature, we identified a gene encoding novel ∆15 fatty acid desaturase, EhDES15, involved in the production of n-3 polyunsaturated fatty acids in E. huxleyi. This desaturase contains a putative transit sequence for localization in chloroplasts and a ∆6 desaturase-like domain, but it does not contain a cytochrome b5 domain nor typical His-boxes found in ∆15 desaturases. Heterologous expression of EhDES15 cDNA in cyanobacterium Synechocystis sp. PCC 6803 cells increased the level of n-3 fatty acid species, which are produced at low levels in wild-type cells grown at 30°C. The orthologous genes are only conserved in the genomes of prasinophytes and cryptophytes. The His-boxes conserved in orthologues varied from that of the canonical ∆15 desaturases. These results suggested the gene encodes a novel ∆15 desaturase responsible for the synthesis of 18:3n-3 from 18:2n-6 in E. huxleyi.

11.
Environ Microbiol ; 17(7): 2430-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25403325

RESUMO

Cyanobacteria possess circadian clocks consisting of KaiABC proteins, and circadian rhythm must closely relate to the primary metabolism. A histidine kinase, SasA, interacts with KaiC to transduce circadian signals and widely regulates transcription in Synechococcus sp. PCC 7942, although the involvement of SasA in primary metabolism has not been demonstrated at metabolite levels. Here, we generated a strain overexpressing hik8 (HOX80), an orthologue of SasA in Synechocystis sp. PCC 6803. HOX80 grew slowly under light conditions and lost viability under continuous dark conditions. Transcript levels of genes related to sugar catabolism remained higher in HOX80 under dark conditions. Metabolomic analysis revealed that under light conditions, glycogen was undetectable in HOX80, and there were decreased levels of metabolites of sugar catabolism and increased levels of amino acids, compared with those in the wild-type strain. HOX80 exhibited aberrant degradation of SigE proteins after a light-to-dark transition and immunoprecipitation analysis revealed that Hik8 directly interacts with KaiC1. The results of this study demonstrate that overexpression of hik8 widely alters sugar and amino acid metabolism, revealing the involvement of Hik8 in primary metabolism under both light and dark conditions in this cyanobacterium.


Assuntos
Metabolismo dos Carboidratos/genética , Relógios Circadianos/genética , Proteínas Quinases/genética , Synechococcus/genética , Synechocystis/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Regulação Bacteriana da Expressão Gênica , Glicogênio/metabolismo , Histidina Quinase , Luz , Metabolômica , Proteínas Quinases/metabolismo , Synechococcus/metabolismo , Synechocystis/metabolismo
12.
Biochem J ; 449(3): 751-60, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23088579

RESUMO

A conserved hypothetical protein, Sll1130, is a novel transcription factor that regulates the expression of major heat-responsive genes in Synechocystis sp. PCC6803. Synechocystis exhibited an increased thermotolerance due to disruption of sll1130. Δsll1130 cells recovered much faster than wild-type cells after they were subjected to heat shock (50°C) for 30 min followed by recovery at 34°C for 48 h. In Δsll1130 cultures, 70% of the cells were viable compared with the wild-type culture in which only 30% of the cells were viable. DNA microarray analysis revealed that in Δsll1130, expression of the heat-responsive genes such as htpG, hspA, isiA, isiB and several hypothetical genes were up-regulated. Sll1130 binds to a conserved inverted-repeat (GGCGATCGCC) located in the upstream region of the above genes. In addition, both the transcript and protein levels of sll1130 were immediately down-regulated upon shift of wild-type cells from 34 to 42°C. Collectively the results of the present study suggest that Sll1130 is a heat-responsive transcriptional regulator that represses the expression of certain heat-inducible genes at optimum growth temperatures. Upon heat shock, a quick drop in the Sll1130 levels leads to de-repression of the heat-shock genes and subsequent thermal acclimation. On the basis of the findings of the present study, we present a model which describes the heat-shock response involving Sll1130.


Assuntos
Synechocystis/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Synechocystis/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
13.
Mar Biotechnol (NY) ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180637

RESUMO

A marine thraustochytrid, Aurantiochytrium, is a promising organism to produce docosahexaenoic acid (DHA) and squalene. Utilization of inexpensive substances such as proteins in wastes and by-products from the food industry for cultivation is a considerable option to reduce production cost; however, the proteolytic ability of Aurantiochytrium spp. is low compared to taxonomically close Shizochytrium aggregatum. We previously identified extracellular protease (extracellular protease 1, EP1) in S. aggregatum ATCC 28209 from the supernatant of the culture and found that a similar protease gene (EP2) was located downstream of the EP1 gene. In the present study, we created the transformants expressing SaEP1 and/or SaEP2 to enhance the proteolytic ability of Aurantiochytrium sp. 18W-13a strain and cultivated them in the medium containing casein as a test protein substrate. Through SDS-PAGE analysis, we confirmed that casein in the supernatant was more efficiently degraded by the transformants than the wild type, suggesting that the expressed protease(s) were properly expressed and excreted. After 4-day cultivation in the casein medium, the value of optical density at 660 nm and the cell number in the culture of the transformant that expressed both SaEP1 and SaEP2 (designated as EP12 strain) showed 1.48- and 1.38-fold higher than those of wild type, respectively. The DHA and squalene yield of the EP12 strain were respectively 158.3 and 0.23 mg L-1, and these values were 1.42- and 2.01-fold higher than those of wild type, respectively, suggesting that the EP12 created in the present study is a favorable strain for the cultivation using protein-containing medium.

14.
J Biosci Bioeng ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39112180

RESUMO

Utilizing ammonium in wastewater is a prospective way to reduce costs for bioproduction by photosynthetic organisms. A model cyanobacterium Synechocystis sp. PCC 6803 takes advantage of tolerance to ammonium compared to other microalgae. However, in this study, we report that Synechocystis growth was inhibited when cultured in a medium containing ammonium. This may be due to the pH decreasing below 6 caused by consuming ammonium. Transcriptomic analysis by RNA-seq revealed that the expression of the genes for proteases, chaperones, and antioxidant-scavenging enzymes was induced, but photosynthetic components were repressed. Although these regulations are similar to the previous studies on acidic stress in nitrate-containing culture, the expression of genes such as sigD, slr0042, slr0373, slr0374, and slr1501 was different, indicating that these phenomena are not simply identical to the known responses to acidic stress. The expression of the genes for photosynthesis, gluconeogenesis, and nitrogen assimilation was repressed, and glycolysis and the tricarboxylic acid cycle were induced. Despite the up-regulation of the carbon catabolism and down-regulation of nitrogen assimilation, the 2-oxoglutarate content in the ammonium-grown cells was lower than that in the nitrate-grown cells, and the contents of the major amino acids, such as Glu, Ala, Asp, and Gly were decreased, while the minor amino acids were the same or increased, especially Arg, Lys, Val, and Ile. These results demonstrated that the acidic stress induced by the consumption of ammonium ions differs from the sudden pH drop, and the Synechocystis cell manages amino acid levels to endure carbon limitation under the stress.

15.
Microbiol Resour Announc ; 13(2): e0081623, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179908

RESUMO

Tetratostichococcus sp. P1 shows an acidophilic phenotype which could allow mass-scale monoculture of this green microalga without severe contamination by environmental microorganisms. In this study, we report a chromosome-scale genome assembly for Tetratostichococcus sp. P1.

16.
Bioengineered ; 15(1): 2314888, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375815

RESUMO

Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 µM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.


Assuntos
Clorófitas , Metais Pesados , Cádmio/toxicidade , Bioacumulação , Perfilação da Expressão Gênica , Plantas/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorofila
17.
Genes (Basel) ; 14(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136973

RESUMO

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Assuntos
Citocromos b , Synechocystis , Transporte de Elétrons/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxirredução , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plastoquinona/química
18.
J Proteome Res ; 11(1): 502-14, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22050404

RESUMO

Cyanobacteria are the only prokaryotes possessing plasma, thylakoid, and outer membranes. The plasma membrane of a cyanobacterial cell is essential for the biogenesis of cyanobacterial photosystems and serves as a barrier against environmental stress. We previously identified dozens of salt-responsive proteins in the plasma membrane of Synechocystis sp. PCC 6803. Five histidine kinases (Hiks) including Hik33 were also proposed to be involved in the perception of salt stress in Synechocystis. In this study, we analyzed proteomic profiles of the plasma membrane from a hik33-knockout mutant (ΔHik33) under normal and salt-stress conditions. Using 2D-DIGE followed by mass spectrometry analysis, we identified 26 differentially expressed proteins in ΔHik33 mutant cells. Major changes, due to the Hik33 mutation, included the substrate-binding proteins of ABC transporters, such as GgtB and FutA1, regulatory proteins including MorR and Rre13, as well as several hypothetical proteins. Under salt-stress conditions, the Hik33 mutation reduced levels of 7 additional proteins, such as NrtA, nitrate/sulfonate/bicarbonate-binding protein and LexA, and enhanced levels of 9 additional proteins including SphX. These observations suggest a substantial rearrangement in the plasma membrane proteome of Synechocystis due to the loss of hik33. Furthermore, a comprehensive molecular network was revealed in ΔHik33 mutant coping with salt stress.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/genética , Proteoma/metabolismo , Estresse Fisiológico , Synechocystis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Histidina Quinase , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Proteoma/química , Proteoma/genética , Proteômica , Cloreto de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Synechocystis/genética , Synechocystis/metabolismo , Eletroforese em Gel Diferencial Bidimensional
19.
Plant Cell Physiol ; 53(7): 1255-66, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22555814

RESUMO

Histidine kinase Hik33 responds to a variety of stress conditions and regulates the expression of stress-inducible genes in the cyanobacterium Synechocystis sp. PCC 6803. However, the mechanisms of response and regulation remain unknown. Generally, a histidine kinase perceives a specific signal via its N-terminal region. Hik33 has two transmembrane helices, a periplasmic loop, and HAMP and PAS domains in its N-terminal region, all of which might be involved in signal perception. To investigate the functions of these subdomains in vivo, we expressed a chimeric histidine kinase (Hik33n-SphSc) by fusing the N-terminal region of Hik33 with the C-terminal region of a sensory histidine kinase that is activated under phosphate-deficient conditions, SphS. Hik33n-SphSc responded to several stimuli that are perceived by intact Hik33 and regulated expression of the phoA gene for alkaline phosphatase, which is normally regulated under phosphate-deficient conditions by SphS. We introduced genes for modified versions of Hik33n-SphSc into Synechocystis and monitored expression of phoA under standard and stress conditions. Hik33n-SphSc lacking either the transmembrane helices or both the HAMP and PAS domains had no kinase activity, whereas Hik33n-SphSc lacking the HAMP or the PAS domain enhanced expression of phoA. Moreover, variants of Hik33n-SphSc, in which the membrane-localizing region was replaced by those of other histidine kinases, also responded to stress conditions. Thus, transmembrane helices, regardless of sequence, appear to be essential for the function of Hik33, while the HAMP and PAS domains play important roles in regulating kinase activity in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Synechocystis/enzimologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Northern Blotting , Membrana Celular/genética , Membrana Celular/metabolismo , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Histidina Quinase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico , Synechocystis/genética
20.
Plant Cell Physiol ; 53(6): 1043-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492231

RESUMO

Pyruvate carboxylase (PYC) catalyzes the ß-carboxylation of pyruvate to yield oxaloacetate (OAA). We previously isolated a cDNA encoding a putative PYC (EhPYC1) from the haptophyte alga Emiliania huxleyi and then proposed that EhPYC1 contributes to active anaplerotic ß-carboxylation during photosynthesis although PYC activity was not detected in the cell extracts. Involvement of PYC in photosynthetic carbon metabolism is unique, since PYC generally functions in non-photosynthetic organisms. In the present study, we demonstrate that EhPYC1 is highly sensitive to endogenous proteases and therefore is easily degraded in cell extracts. By avoiding proteolytic degradation, PYC activity can be detected in the cell extracts of E. huxleyi. The activity of a recombinant His-tagged EhPYC1 expressed in Streptomyces lividans was inhibited by l-malate in a mixed non-competitive manner. Immunofluorescence labeling showed that EhPYC1 is located in the plastid. This result agrees with the prediction that a bipartite plastid-targeting signal is present that functions to deliver proteins into the four-membrane plastid of haptophyte algae. This is the first finding of a plastid-located PYC. These results indicate that E. huxleyi possesses a unique pathway to produce OAA catalyzed by PYC, and the pathway may provide carbon skeletons for amino acid biosynthesis in the plastid. A database search indicates that PYC genes are widespread in green algae, diatoms and brown algae, suggesting the crucial role of PYC in various aquatic phototrophs.


Assuntos
Proteínas de Algas/metabolismo , Haptófitas/enzimologia , Plastídeos/enzimologia , Piruvato Carboxilase/metabolismo , Proteínas de Algas/genética , Sequência de Aminoácidos , Ácido Aspártico/farmacologia , Avidina , Carbono/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Ativação Enzimática , Genes de Plantas , Haptófitas/genética , Membranas Intracelulares/metabolismo , Luz , Malatos/farmacologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ácido Oxaloacético/metabolismo , Fotossíntese , Plastídeos/genética , Transporte Proteico , Proteólise , Piruvato Carboxilase/antagonistas & inibidores , Piruvato Carboxilase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Streptomyces lividans/genética , Streptomyces lividans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA