Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 712-713: 149962, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642493

RESUMO

The human cathelicidin LL-37 shows activity against microorganisms, but it is also cytotoxic to host cells. The CAMP gene codes for the LL-37 precursor hCAP18 which is processed extracellularly to active LL-37. It has previously been shown that vitamin D stimulates CAMP gene activity, but less information is available demonstrating that vitamin D also can increase hCAP18/LL-37 protein production. Here, we show with RT-qPCR that a physiological concentration of vitamin D (50 nM) enhances CAMP mRNA levels by about 170 times in human THP-1 monocyte cells. Stimulation with 50 nM vitamin D increases hCAP18/LL-37 protein contents 3-4 times in THP-1 cell lysates demonstrated by both dot blot analysis and ELISA applying two different hCAP18/LL-37 antibodies. Treatment with the proteasome inhibitor MG132 enhances hCAP18/LL-37 levels, suggesting that turnover of hCAP18/LL-37 protein is regulated by the proteasome. The hCAP18/LL-37 concentration in vitamin D-stimulated THP-1 cells corresponds to 1.04 µM LL-37. Interestingly, synthetic LL-37, at this concentration, reduces viability of human osteoblast-like MG63 cells, whereas the THP-1 cells are less sensitive as demonstrated by the MTT assay. In summary, we show that vitamin D enhances hCAP18/LL-37 production, and that this effect can be of physiological/pathophysiological relevance for LL-37-induced human osteoblast toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Osteoblastos , Vitamina D , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Células THP-1 , Complexo de Endopeptidases do Proteassoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
Bioinformatics ; 37(21): 3932-3933, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34469515

RESUMO

SUMMARY: The Flexible Taxonomy Database framework provides a method for modification and merging official and custom taxonomic databases to create improved databases. Using such databases will increase accuracy and precision of existing methods to classify sequence reads. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/FOI-Bioinformatics/flextaxd and installable through Bioconda.


Assuntos
Software , Bases de Dados Factuais
3.
FASEB J ; 33(9): 10193-10206, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199885

RESUMO

The ion pump Na+, K+-ATPase (NKA) is a receptor for the cardiotonic steroid ouabain. Subsaturating concentration of ouabain triggers intracellular calcium oscillations, stimulates cell proliferation and adhesion, and protects from apoptosis. However, it is controversial whether ouabain-bound NKA is considered a signal transducer. To address this question, we performed a global analysis of protein phosphorylation in COS-7 cells, identifying 2580 regulated phosphorylation events on 1242 proteins upon 10- and 20-min treatment with ouabain. Regulated phosphorylated proteins include the inositol triphosphate receptor and stromal interaction molecule, which are essential for initiating calcium oscillations. Hierarchical clustering revealed that ouabain triggers a structured phosphorylation response that occurs in a well-defined, time-dependent manner and affects specific cellular processes, including cell proliferation and cell-cell junctions. We additionally identify regulation of the phosphorylation of several calcium and calmodulin-dependent protein kinases (CAMKs), including 2 sites of CAMK type II-γ (CAMK2G), a protein known to regulate apoptosis. To verify the significance of this result, CAMK2G was knocked down in primary kidney cells. CAMK2G knockdown impaired ouabain-dependent protection from apoptosis upon treatment with high glucose or serum deprivation. In conclusion, we establish NKA as the coordinator of a broad, tightly regulated phosphorylation response in cells and define CAMK2G as a downstream effector of NKA.-Panizza, E., Zhang, L., Fontana, J. M., Hamada, K., Svensson, D., Akkuratov, E. E., Scott, L., Mikoshiba, K., Brismar, H., Lehtiö, J., Aperia, A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Ouabaína/farmacologia , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células COS , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Regulação para Baixo/efeitos dos fármacos , Glucose/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Quinases/efeitos dos fármacos , Proteoma , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos
4.
Inflamm Res ; 69(6): 579-588, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32221618

RESUMO

OBJECTIVE: The importance of human host defense peptide LL-37 in vascular innate immunity is not understood. Here, we assess the impact of LL-37 on double-stranded RNA (dsRNA) signaling in human vascular smooth muscle cells. MATERIALS AND METHODS: Cellular import of LL-37 and synthetic dsRNA (poly I:C) were investigated by immunocytochemistry and fluorescence imaging. Transcript and protein expression were determined by qPCR, ELISA and Western blot. Knockdown of TLR3 was performed by siRNA. RESULTS: LL-37 was rapidly internalized, suggesting that it has intracellular actions. Co-stimulation with poly I:C and LL-37 enhanced pro-inflammatory IL-6 and MCP-1 transcripts several fold compared to treatment with poly I:C or LL-37 alone. Poly I:C increased IL-6 and MCP-1 protein production, and this effect was potentiated by LL-37. LL-37-induced stimulation of poly I:C signaling was not associated with enhanced import of poly I:C. Treatment with poly I:C and LL-37 in combination increased expression of dsRNA receptor TLR3 compared to stimulation with poly I:C or LL-37 alone. In TLR3 knockdown cells, treatment with poly I:C and LL-37 in combination had no effect on IL-6 and MCP-1 expression, showing loss of function. CONCLUSIONS: LL-37 potentiates dsRNA-induced cytokine production through up-regulation of TLR3 expression representing a novel pro-inflammatory mechanism.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptor 3 Toll-Like/genética , Sobrevivência Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Vasos Coronários/citologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-6/metabolismo , Músculo Liso Vascular/citologia , Poli I-C , RNA Interferente Pequeno , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Regulação para Cima , Catelicidinas
5.
Eur J Oral Sci ; 128(1): 1-6, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825534

RESUMO

The antimicrobial peptide LL-37 is active against oral bacteria and has been demonstrated to be present in human saliva, but its distribution in different fractions of saliva is not known. LL-37 is formed from its intracellular pro-form, hCAP18, in an extracellular enzymatic reaction catalyzed by proteinase 3 and kallikrein 5. Here, we prepared cell-containing and cell-free fractions of unstimulated human whole saliva by centrifugation after depolymerization of mucins with dithiothreitol, and measured the levels of hCAP18/LL-37 in these fractions using ELISA. Cellular expression of hCAP18/LL-37 was determined by western blotting and immunocytochemistry. The ELISA analyses demonstrated that both cells and cell-free saliva contained hCAP18/LL-37. Western blot analysis of cell-pellet homogenates showed a strong band corresponding to hCAP18 at the correct molecular weight and a weak band corresponding to LL-37. Phase-contrast and light microscopy revealed that the cells consisted of desquamated epithelial cells. These cells expressed cytoplasmic immunoreactivity for hCAP18/LL-37. The peripheral part of the cytoplasm, corresponding to the plasma membrane, was particularly rich in hCAP18/LL-37 immunoreactivity. No immunoreactivity was observed after omission of the primary antibody. We conclude that desquamated epithelial cells of human whole saliva contain antimicrobial hCAP18/LL-37, suggesting that these cells may take part in the innate immune system by harboring and releasing these peptides.


Assuntos
Saliva , Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Células Epiteliais , Humanos
6.
BMC Bioinformatics ; 20(1): 498, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615395

RESUMO

BACKGROUND: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict. To make the situation even more complex, multiple tools may be run in a sequential pipeline where the final output depends on the parameter configuration for each tool in the pipeline. Because of the complexity and difficulty of predicting outcomes, in practice parameters are often left at default settings or set based on personal or peer experience obtained in a trial and error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic pipelines, a systematic approach is needed. RESULTS: We present doepipeline, a novel approach to optimizing bioinformatic software parameters, based on core concepts of the Design of Experiments methodology and recent advances in subset designs. Optimal parameter settings are first approximated in a screening phase using a subset design that efficiently spans the entire search space, then optimized in the subsequent phase using response surface designs and OLS modeling. Doepipeline was used to optimize parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings that produced a better outcome with respect to the characteristic measured when compared to using default values. Our approach is implemented and available in the Python package doepipeline. CONCLUSIONS: Our proposed methodology provides a systematic and robust framework for optimizing software parameter settings, in contrast to labor- and time-intensive manual parameter tweaking. Implementation in doepipeline makes our methodology accessible and user-friendly, and allows for automatic optimization of tools in a wide range of cases. The source code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be installed through conda-forge.


Assuntos
Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Francisella tularensis/genética , Genoma Bacteriano , Nanoporos
7.
Am J Physiol Renal Physiol ; 316(5): F1078-F1089, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864838

RESUMO

It is generally believed that cells that are unable to downregulate glucose transport are particularly vulnerable to hyperglycemia. Yet, little is known about the relation between expression of glucose transporters and acute toxic effects of high glucose exposure. In the present ex vivo study of rat renal cells, we compared the apoptotic response to a moderate increase in glucose concentration. We studied cell types that commonly are targeted in diabetic kidney disease (DKD): proximal tubule cells, which express Na+-dependent glucose transporter (SGLT)2, mesangial cells, which express SGLT1, and podocytes, which lack SGLT and take up glucose via insulin-dependent glucose transporter 4. Proximal tubule cells and mesangial cells responded within 4-8 h of exposure to 15 mM glucose with translocation of the apoptotic protein Bax to mitochondria and an increased apoptotic index. SGLT downregulation and exposure to SGLT inhibitors abolished the apoptotic response. The onset of overt DKD generally coincides with the onset of albuminuria. Albumin had an additive effect on the apoptotic response. Ouabain, which interferes with the apoptotic onset, rescued from the apoptotic response. Insulin-supplemented podocytes remained resistant to 15 and 30 mM glucose for at least 24 h. Our study points to a previously unappreciated role of SGLT-dependent glucose uptake as a risk factor for diabetic complications and highlights the importance of therapeutic approaches that specifically target the different cell types in DKD.


Assuntos
Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Células Epiteliais/efeitos dos fármacos , Glucose/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Células Cultivadas , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Insulina/farmacologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Ouabaína/farmacologia , Podócitos/metabolismo , Podócitos/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo
8.
J Periodontal Res ; 54(6): 662-670, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31095741

RESUMO

OBJECTIVE: The human host defense peptide LL-37 both shows antimicrobial effects and modulates host cell properties. Here, we assess the effects of synthesized LL-37 on lipopolysaccharide (LPS)-induced inflammation in human periodontal ligament (PDL) cells and investigates underlying mechanisms. BACKGROUND: LL-37 has been detected in the periodontal tissues, but its functional importance for PDL cell innate immune responses is not known. METHODS: Human PDL cells were obtained from premolars extracted on orthodontic indications. Cellular pro-inflammatory monocyte chemoattractant protein-1 (MCP-1) mRNA expression was determined using quantitative real-time RT-PCR. MCP-1 protein production was assessed by western blot and ELISA. Internalization of LL-37 by PDL cells was visualized by immunocytochemistry. Nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activity was assessed by western blot of phosphorylated p65, phosphorylated p105, and IκBα proteins. Binding of LL-37 to PDL cell DNA was determined by isolation and purification of DNA and dot blot for LL-37 immunoreactivity. RESULTS: Treatment with LL-37 (1 µmol/L) for 24 hours prevented LPS-induced stimulation of MCP-1 expression analyzed both on transcript and on protein levels. Stimulation with LL-37 (1 µmol/L) for 24 hours had no effect on toll-like receptor (TLR)2 and TLR4 transcript expression, suggesting that LL-37 acts downstream of the TLRs. Preincubation with LL-37 for 60 minutes followed by stimulation with LPS for 24 hours in the absence of LL-37 completely prevented LPS-evoked MCP-1 transcript expression, implying that LL-37 acts intracellularly and not via binding and neutralization of LPS. In PDL cells stimulated with LL-37 for 60 minutes, the peptide was internalized as demonstrated by immunocytochemistry, suggesting an intracellular mechanism of action. LL-37 immunoreactivity was observed both in the cytosol and in the nucleus. Downregulation of LPS-induced MCP-1 by LL-37 was not mediated by reduction in NF-κB activity as shown by unaltered expression of phosphorylated p65, phosphorylated p105, and IκBα NF-κB proteins in the presence of LL-37. Immunoreactivity for LL-37 was observed in PDL cell DNA treated with but not without 0.1 and 1 µmol/L LL-37 for 60 minutes in vitro. CONCLUSION: LL-37 abolishes LPS-induced MCP-1 production in human PDL cells through an intracellular, NF-κB-independent mechanism which probably involves direct interaction between LL-37 and DNA.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Quimiocina CCL2/metabolismo , Ligamento Periodontal/citologia , Humanos , Lipopolissacarídeos , NF-kappa B/metabolismo , Ligamento Periodontal/efeitos dos fármacos , Catelicidinas
9.
Biochem J ; 475(4): 775-786, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29358188

RESUMO

The protein gC1qR (globular C1q receptor), also named p33, was originally identified as a binding partner of the globular heads of C1q in the complement system. gC1qR/p33 is abundantly expressed in many cell types, but the functional importance of this protein is not completely understood. Here, we investigate the impact of gC1qR/p33 on the production and function of the pathophysiologically important chemokine monocyte chemoattractant protein-1 (MCP-1) and the underlying molecular mechanisms. Knockdown of gC1qR/p33 negatively regulated the production of MCP-1, but had no effect on the expression of transcript for MCP-1 in human periodontal ligament cells, suggesting a translational/post-translational mechanism of action. Laser scanning confocal microscopy showed considerable cytosolic co-localization of gC1qR/p33 and MCP-1, and co-immunoprecipitation disclosed direct physical interaction between gC1qR/p33 and MCP-1. Surface plasmon resonance analysis revealed a high-affinity binding (KD = 10.9 nM) between gC1qR/p33 and MCP-1. Using a transwell migration assay, we found that recombinant gC1qR/p33 enhances MCP-1-induced migration of human THP-1 monocytes, pointing to a functional importance of the interaction between gC1qR/p33 and MCP-1. An in vitro assay revealed a rapid turnover of the MCP-1 protein and that gC1qR/p33 stabilizes MCP-1, hence preventing its degradation. We propose that endogenous gC1qR/p33 physically interacts with MCP-1 causing stabilization of the MCP-1 protein and stimulation of its activity in human periodontal ligament cells, suggesting a novel gC1qR/p33-mediated pro-inflammatory mechanism of action.


Assuntos
Proteínas de Transporte/genética , Quimiocina CCL2/genética , Inflamação/genética , Proteínas Mitocondriais/genética , Ligamento Periodontal/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular/genética , Quimiocina CCL2/biossíntese , Quimiocina CCL2/química , Citosol/química , Citosol/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Microscopia Confocal , Proteínas Mitocondriais/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Ligamento Periodontal/crescimento & desenvolvimento , Ligamento Periodontal/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , Ressonância de Plasmônio de Superfície
10.
Am J Physiol Renal Physiol ; 314(5): F893-F905, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357417

RESUMO

Bladder denervation and bladder outlet obstruction are urological conditions that cause bladder growth. Transcriptomic surveys in outlet obstruction have identified differentially expressed genes, but similar studies following denervation have not been done. This was addressed using a rat model in which the pelvic ganglia were cryo-ablated followed by bladder microarray analyses. At 10 days following denervation, bladder weight had increased 5.6-fold, and 2,890 mRNAs and 135 micro-RNAs (miRNAs) were differentially expressed. Comparison with array data from obstructed bladders demonstrated overlap between the conditions, and 10% of mRNAs changed significantly and in the same direction. Many mRNAs, including collagen triple helix repeat containing 1 ( Cthrc1), Prc1, Plod2, and Dkk3, and miRNAs, such as miR-212 and miR-29, resided in the shared signature. Discordantly regulated transcripts in the two models were rare, making up for <0.07% of all changes, and the gene products in this category localized to the urothelium of normal bladders. These transcripts may potentially be used to diagnose sensory denervation. Western blotting demonstrated directionally consistent changes at the protein level, with increases of, e.g., Cthrc1, Prc1, Plod2, and Dkk3. We chose Cthrc1 for further studies and found that Cthrc1 was induced in the smooth muscle cell (SMC) layer following denervation. TGF-ß1 stimulation and miR-30d-5p inhibition increased Cthrc1 in bladder SMCs, and knockdown and overexpression of Cthrc1 reduced and increased SMC proliferation. This work defines common and distinguishing features of bladder denervation and obstruction and suggests a role for Cthrc1 in bladder growth following denervation.


Assuntos
Denervação Autônoma/métodos , Proliferação de Células , Criocirurgia , Perfilação da Expressão Gênica/métodos , Glicoproteínas/metabolismo , Miócitos de Músculo Liso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Bexiga Urinária/inervação , Bexiga Urinária/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Glicoproteínas/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transcriptoma , Fator de Crescimento Transformador beta1/farmacologia , Bexiga Urinária/efeitos dos fármacos , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia
11.
Biochem Biophys Res Commun ; 501(1): 280-285, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29729269

RESUMO

The host defense peptide LL-37 is cytotoxic for bacteria but it has also been reported to reduce host cell viability through an intracellular mechanism. LL-37-evoked cytotoxicity may be involved in the loss of bone tissue in periodontitis which is an inflammatory disease characterized by high concentrations of LL-37 observed locally in the periodontal tissue at the inflammation process. Here, we showed that LL-37 reduced human osteoblast-like MG63 cell viability assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and increased plasma membrane permeability determined by measuring intracellular Ca2+ levels and lactate dehydrogenase (LDH) release. Treatment with chlorpromazine, a well-recognized inhibitor of clathrin-mediated endocytosis, reduced cellular uptake of synthesized LL-37 b y about 30% assessed by Western blotting and ELISA, while filipin, an inhibitor of caveolin-mediated endocytosis, had no effect. The chlorpromazine-induced attenuation of LL-37 uptake was not associated with modulation of LL-37-induced cytotoxicity and LL-37-evoked plasma membrane permeability. Clathrin heavy chain 2 is a major protein of the polyhedral coat of coated pits and vesicles encoded by clathrin heavy chain like 1 gene. Down-regulation of clathrin heavy chain like 1 gene activity by siRNA reduced uptake of LL-37 but did not affect LL-37-induced cytotoxicity and permeability. Thus, we show, using both a pharmacological approach and knockdown of clathrin heavy chain like 1 expression, that LL-37-induced MG63 cell cytotoxicity and permeability occurs independently of LL-37 uptake via clathrin-mediated endocytosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/toxicidade , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorpromazina/farmacologia , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Invaginações Revestidas da Membrana Celular/efeitos dos fármacos , Invaginações Revestidas da Membrana Celular/metabolismo , Regulação para Baixo , Humanos , Osteoblastos/patologia , Catelicidinas
12.
Eur J Oral Sci ; 126(2): 93-100, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29424090

RESUMO

The human host defense peptide, LL-37, is an important player in the first line of defense against invading microorganisms. LL-37 and its precursor, hCAP18, have been detected in unstimulated whole saliva but no reports showing hCAP18/LL-37 in isolated, parotid, and/or submandibular/sublingual saliva have been presented. Here, we measured the levels of hCAP18/LL-37 in human parotid and submandibular/sublingual saliva and investigated the expression of hCAP18/LL-37 in parotid and submandibular gland tissue. Parotid and submandibular/sublingual saliva was collected from healthy volunteers, and the levels of hCAP18/LL-37 in saliva were analyzed by dot blot, ELISA, and western blotting. Cellular expression of hCAP18/LL-37 in human parotid and submandibular glands was investigated by immunohistochemistry. Immunoreactivity for hCAP18/LL-37 was detected in both parotid and submandibular/sublingual saliva of all individuals. The concentration of hCAP18/LL-37 was similar in parotid and submandibular/sublingual saliva, and was determined by densitometric scanning of each dot and normalization to the total protein concentration of each sample, and by ELISA. Double immunohistochemistry revealed that intravascular neutrophils of both parotid and submandibular glands express hCAP18/LL-37. For the first time, we demonstrate hCAP18/LL-37 in isolated human parotid and submandibular/sublingual saliva and expression of hCAP18/LL-37 in glandular intravascular neutrophils, indicating that neutrophils of the major salivary glands contribute to the LL-37 content of whole saliva.


Assuntos
Peptídeos Catiônicos Antimicrobianos/análise , Neutrófilos/química , Saliva/química , Peptídeos Catiônicos Antimicrobianos/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Neutrófilos/imunologia , Glândula Parótida , Glândula Submandibular , Catelicidinas
13.
J Cell Physiol ; 232(11): 3088-3102, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28019664

RESUMO

Modulation from contractile to synthetic phenotype of vascular smooth muscle cells is a central process in disorders involving compromised integrity of the vascular wall. Phenotype modulation has been shown to include transition from voltage-dependent toward voltage-independent regulation of the intracellular calcium level, and inhibition of non-voltage dependent calcium influx contributes to maintenance of the contractile phenotype. One possible mediator of calcium-dependent signaling is the FAK-family non-receptor protein kinase Pyk2, which is activated by a number of stimuli in a calcium-dependent manner. We used the Pyk2 inhibitor PF-4594755 and Pyk2 siRNA to investigate the role of Pyk2 in phenotype modulation in rat carotid artery smooth muscle cells and in cultured intact arteries. Pyk2 inhibition promoted the expression of smooth muscle markers at the mRNA and protein levels under stimulation by FBS or PDGF-BB and counteracted phenotype shift in cultured intact carotid arteries and balloon injury ex vivo. During long-term (24-96 hr) treatment with PF-4594755, smooth muscle markers increased before cell proliferation was inhibited, correlating with decreased KLF4 expression and differing from effects of MEK inhibition. The Pyk2 inhibitor reduced Orai1 and preserved SERCA2a expression in carotid artery segments in organ culture, and eliminated the inhibitory effect of PDGF stimulation on L-type calcium channel and large-conductance calcium-activated potassium channel expression in carotid cells. Basal intracellular calcium level, calcium wave activity, and store-operated calcium influx were reduced after Pyk2 inhibition of growth-stimulated cells. Pyk2 inhibition may provide an interesting approach for preserving vascular smooth muscle differentiation under pathophysiological conditions.


Assuntos
Lesões das Artérias Carótidas/enzimologia , Diferenciação Celular/efeitos dos fármacos , Quinase 2 de Adesão Focal/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Becaplermina , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/fisiopatologia , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/fisiopatologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/enzimologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Técnicas de Cultura de Órgãos , Fenótipo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Transfecção
14.
Biochem Biophys Res Commun ; 493(1): 71-76, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28919413

RESUMO

The human cathelicidin peptide LL-37 has antimicrobial and anti-biofilm functions, but LL-37 may also damage the host by triggering inflammation and exerting a cytotoxic effect, thereby reducing host cell viability. Human plasma mitigates LL-37-induced host cell cytotoxicity but the underlying mechanisms are not completely understood. Apolipoprotein A-I (ApoA-I) is a plasma protein endowed with atheroprotective effects. Here, we investigate the interaction between ApoA-I and LL-37 by biochemical techniques, and furthermore assess if ApoA-I protects against LL-37-evoked cytotoxicity in human umbilical vein endothelial cells (HUVEC). Our results demonstrated that ApoA-I effectively binds LL-37. The binding of ApoA-I to LL-37 resulted in a structural rearrangement of the protein, but this interaction did not cause lower ApoA-I stability. Recombinant ApoA-I protected against LL-37-induced cytotoxicity in HUVEC and endogenous ApoA-I knockdown in HepG2 cells made the cells more sensitive to LL-37-evoked cytotoxicity. We conclude that ApoA-I physically interacts with LL-37 and antagonizes LL-37-induced down-regulation of endothelial cell viability suggesting that this mechanism counteracts endothelial cell dysfunction.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Apoptose/fisiologia , Células Endoteliais/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Ligação Proteica , Catelicidinas
15.
Inflamm Res ; 66(9): 823-831, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28597116

RESUMO

OBJECTIVE: Regulation of immune-like cell properties of periodontal ligament (PDL) cells is not understood. We investigate the importance of secretory leukocyte protease inhibitor (SLPI) for production of pro-inflammatory cytokines in human PDL cells. MATERIALS AND METHODS: PDL cells were isolated from teeth extracted for orthodontic reasons. Cellular location of SLPI was investigated by immunocytochemistry. Cytokine transcript and protein expression were assessed by quantitative real-time RT-PCR and Western blotting. SLPI gene activity was knocked-down by siRNA. NF-κB signaling was assessed by measuring IκBα, and phosphorylated p65 and p105 protein expression. RESULTS: PDL cells showed cytoplasmic expression of SLPI. Cellular expression level of SLPI negatively correlated to LPS-induced stimulation of IL-6 and MCP-1. Both SLPI gene activity and protein were reduced by about 70% in PDL cells treated with SLPI siRNA compared to cells treated with non-coding construct. Treatment with SLPI siRNA was associated with up-regulation of both basal and LPS-stimulated IL-6, MCP-1 and TLRs mRNA expression. The up-regulation of MCP-1 transcript in SLPI siRNA-treated cells was confirmed on protein level. SLPI siRNA-treatment enhanced the phosphorylated NF-κB p105 protein expression. CONCLUSIONS: SLPI regulates PDL cell pro-inflammatory cytokine expression and modulates NF-κB signaling, suggesting that SLPI governs the immune cell-like properties of PDL cells.


Assuntos
Quimiocina CCL2/genética , Interleucina-6/genética , Ligamento Periodontal/citologia , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Adolescente , Linhagem Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Feminino , Humanos , Lipopolissacarídeos , Masculino , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Inibidor Secretado de Peptidases Leucocitárias/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
16.
Biochem J ; 473(1): 87-98, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26508735

RESUMO

The human host-defence peptide (HDP) LL-37 not only displays anti-microbial activity but also immune-modulating properties that trigger intracellular signalling events in host cells. Since the cytolytic activity of high LL-37 concentrations affects cell viability, the function of LL-37 requires tight regulation. Eukaryotic cells therefore benefit from protective measures to prevent harmful effects of LL-37. p33, also known as globular C1q receptor (gC1qR), is reported to act as an LL-37 antagonist by binding the peptide, thereby reducing its cytotoxic activity. In the present report, we show that high levels of endogenous p33 correlate with an increased viability in human cells treated with LL-37. Sub-cellular localization analysis showed p33 distribution at the mitochondria, the plasma membrane and in the cytosol. Strikingly, cytosolic overexpression of p33 significantly antagonized detrimental effects of LL-37 on cell fitness, whereas the reverse effect was observed by siRNA-induced down-regulation of p33. However, modulation of p33 expression had no effect on LL-37-induced plasma membrane pore forming capacity pointing to an intracellular mechanism. A scavenging function of intracellular p33 is further supported by co-immunoprecipitation experiments, showing a direct interaction between intracellular p33 and LL-37. Thus, our findings support an important role of intracellular p33 in maintaining cell viability by counteracting LL-37-induced cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citotoxinas/toxicidade , Glicoproteínas de Membrana/biossíntese , Receptores de Complemento/biossíntese , Adolescente , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Células HeLa , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Receptores de Complemento/genética , Catelicidinas
17.
Cell Tissue Res ; 366(2): 353-362, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27357804

RESUMO

The biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3), has been reported to positively regulate the human cathelicidin anti-microbial peptide (CAMP) gene coding for LL-37, but the mechanisms are not completely understood. We have determined the expression of CAMP, vitamin D receptor (VDR), and the retinoid X receptor (RXR) isoforms in human skin and gingival tissue biopsies and investigated the signaling pathways involved in 1,25D3-induced upregulation of CAMP. Human skin and gingival biopsies exhibited few VDR-immunoreactive cells within the stratum basale, whereas rat colon enterocytes (positive control) possessed abundant VDR immunoreactivity. Nuclear VDR immunoreactivity was demonstrated in human skin keratinocytes (HaCaT cells). Gene analysis revealed that human skin biopsies expressed higher levels of both CAMP and RXRα mRNA than human gingival biopsies, whereas VDR and RXRß transcript levels were similar in skin and gingiva. In HaCaT cells, treatment with 1,25D3 (5 nM and 1 µM) for 4 and 24 h up-regulated CAMP mRNA several fold, and treatment with 1,25D3 for 24 h increased protein expression of the pro-form of LL-37 (hCAP-18) by about 13 times. The 1,25D3-evoked stimulation of HaCaT CAMP expression was associated with attenuated VDR mRNA and protein expression. Treatment with RXRα short interfering RNA reversed the 1,25D3-induced CAMP expression in HaCaT cells, showing that RXRα is involved in the up-regulation of CAMP by 1,25D3. We conclude that the 1,25D3-evoked stimulation of CAMP expression in human skin keratinocytes is dependent on RXRα but is not associated with the up-regulation of VDR expression.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Queratinócitos/metabolismo , Receptor X Retinoide alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Vitamina D/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular , Feminino , Gengiva/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptor X Retinoide alfa/genética , Pele/metabolismo , Vitamina D/análogos & derivados , Catelicidinas
18.
Inflamm Res ; 65(1): 25-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26433491

RESUMO

INTRODUCTION: The steroid hormone metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25D3), promotes osteogenic activity and regulates calcium and phosphate metabolism, which are actions regarded as classical vitamin D-regulated functions. Besides its role in these processes, 1,25D3 also seems implicated in the host defense against microbial/pro-inflammatory attacks. Low serum levels of vitamin D3 (vitamin D deficiency) are associated with osteoporosis and increased risk of fractures but also inflammatory diseases and their disease progression, presumably via mechanisms associated with 1,25D3-evoked modulation of the innate immune system. 1,25D3 has been reported to modulate many inflammatory responses, suggesting that it regulates multiple transcriptional targets within the inflammatory system. RESULTS: Experimental studies in various experimental systems show that 1,25D3 differentially regulates the production of pro-inflammatory cytokines and chemokines depending on cell type. Importantly, many reports show that 1,25D3 up-regulates expression of the human antimicrobial peptide hCAP-18/LL-37 gene. The hCAP-18/LL-37 gene seems indeed to be an important transcriptional target for 1,25D3. However, only limited evidence is presented showing that 1,25D3 consistently increases the amount of biologically active LL-37 peptide. CONCLUSION: In the present review, we discuss 1,25D3-induced down-regulation of cytokine/chemokine production and stimulation of hCAP-18/LL-37 gene expression which represent two very important pathways for 1,25D3-evoked regulation of the innate immune response.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Colecalciferol/fisiologia , Citocinas/biossíntese , Expressão Gênica/genética , Imunidade Inata/fisiologia , Animais , Colecalciferol/deficiência , Colecalciferol/farmacologia , Humanos , Deficiência de Vitamina D/metabolismo , Catelicidinas
19.
J Vasc Res ; 51(3): 239-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116893

RESUMO

The microRNA-125a (miR-125a) is highly expressed in endothelial cells, but its role in vascular biology is not known. Endothelial cell proliferation and viability play an important role in endothelial healing, and we hypothesize that miR-125a regulates this process. The aim of the present study was to investigate if miR-125a controls human endothelial cell proliferation, viability and endothelial healing, and to assess the mechanisms involved. We showed that overexpression of miR-125a by transfection with miR-125a mimic reduced human umbilical vein endothelial cell (HUVEC) proliferation and viability, and stimulated apoptosis as demonstrated by a miR-125a-induced increase of the proportion of annexin V-positive cells monitored by flow cytometry. Moreover, we showed that the miR-125a mimic downregulated the antiapoptotic Bcl2 protein and upregulated caspase 3, suggesting that these two proteins represent molecular targets for miR-125a. Accordingly, transfection with miR-125a inhibitor, downregulating miR-125a expression, promoted HUVEC proliferation and viability, and reduced apoptosis. Importantly, transfection with miR-125a inhibitor promoted HUVEC tube formation in Matrigel, suggesting that reduction of miR-125a has a proangiogenic effect. In conclusion, downregulation of miR-125a through local transfection with miR-125a inhibitor might be a new way to enhance endothelial cell proliferation and viability, thereby promoting the reendothelialization observed in response to intimal injury.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Caspase 3/biossíntese , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Regulação para Cima
20.
Sci Rep ; 14(1): 1459, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228725

RESUMO

Static form errors due to in-process deflections is a major concern in flank milling of thin-walled parts. To increase both productivity and part geometric accuracy, there is a need to predict and control these form errors. In this work, a modelling framework for prediction of the cutting force-induced form errors, or thickness errors, during flank milling of a thin-walled workpiece is proposed. The modelled workpiece geometry is continuously updated to account for material removal and the reduced stiffness matrix is calculated for nodes in the engagement zone. The proposed modelling framework is able to predict the resulting thickness errors for a thin-walled plate which is cut on both sides. Several cutting strategies and cut patterns using constant z-level finishing are studied. The modelling framework is used to investigate the effect of different cut patterns, machining allowance, cutting tools and cutting parameters on the resulting thickness errors. The framework is experimentally validated for various cutting sequences and cutting parameters. The predicted thickness errors closely correspond to the experimental results. It is shown from numerical evaluations that the selection of an appropriate cut pattern is crucial in order to reduce the thickness error. Furthermore, it is shown that an increased machining allowance gives a decreased thickness error for thin-walled plates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA