Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37683622

RESUMO

Highly stable and environmentally friendly nitrogen-doped graphite quantum dots consisting of ∼12 layers of graphene, average diameter of ∼7.3 nm, prepared by atmospheric pressure microplasma are reported to have blue emission due to surface states created by nitrogen doping (9 atomic%) and reaction with oxygen. The low-temperature synthesis method requires simple precursors in water, with no annealing or filtration, producing crystalline disc-shaped quantum dots with ∼68% photoluminescence emission quantum yield at 420 nm excitation and that have shown stability for more than one month after the synthesis. The nitrogen doping in the quantum dots mainly occurs in graphitic core as substituted type of doping (63-67 atomic%) and the amount of doping is sufficient to create emissive states without impacting the core structure. The optical and chemical properties do not undergo serious retardation even with re-dispersion suggesting easy applicability for cellular imaging or optoelectronics.

2.
Faraday Discuss ; 222(0): 390-404, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32133465

RESUMO

The relationship between the crystallization process and opto-electronic properties of silicon quantum dots (Si QDs) synthesized by atmospheric pressure plasmas (APPs) is studied in this work. The synthesis of Si QDs is carried out by flowing silane as a gas precursor in a plasma confined to a submillimeter space. Experimental conditions are adjusted to propitiate the crystallization of the Si QDs and produce QDs with both amorphous and crystalline character. In all cases, the Si QDs present a well-defined mean particle size in the range of 1.5-5.5 nm. Si QDs present optical bandgaps between 2.3 eV and 2.5 eV, which are affected by quantum confinement. Plasma parameters evaluated using optical emission spectroscopy are then used as inputs for a collisional plasma model, whose calculations yield the surface temperature of the Si QDs within the plasma, justifying the crystallization behavior under certain experimental conditions. We measure the ultraviolet-visible optical properties and electronic properties through various techniques, build an energy level diagram for the valence electrons region as a function of the crystallinity of the QDs, and finally discuss the integration of these as active layers of all-inorganic solar cells.

3.
J Phys Chem Lett ; 15(15): 4185-4190, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38597921

RESUMO

This study examines the effect of quantum confinement and surface orientations on the electronic properties of NiO quantum dots. It compares NiO nanocrystals produced via atmospheric-pressure microplasma and femtosecond laser (fs-laser) ablation in water, finding that both methods yield quantum-confined nanocrystals with a defined face-centered cubic lattice. Notably, fs-laser synthesis generates crystalline nanocrystals from both crystalline and amorphous targets. While the electronic properties, i.e., energy of the highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO), of microplasma-synthesized NiO nanocrystals are consistent with the literature, the electronic characteristics of NiO nanocrystals produced by a fs-laser, particularly the high-lying LUMO level, are unusual for NiO quantum dots. Supported by density functional theory calculations, we show that the observed level positions are related to the different polar and nonpolar faces of the nanocrystal surface.

4.
Sci Rep ; 13(1): 4684, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949161

RESUMO

We discuss the electronic properties of quantum-confined nanocrystals. In particular, we show how, starting from the discrete molecular states of small nanocrystals, an approximate band structure (quasi-band structure) emerges with increasing particle size. Finite temperature is found to broaden the discrete states in energy space forming even for nanocrystals in the quantum-confinement regime quasi-continuous bands in k-space. This bands can be, to a certain extend, interpreted along the lines of standard band structure theory, while taking also finite size and surface effects into account. We discuss this on various prototypical nanocrystal systems.

5.
Sci Rep ; 13(1): 7958, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198177

RESUMO

Nanocrystals have a great potential for future materials with tunable bandgap, due to their optical properties that are related with the material used, their sizes and their surface termination. Here, we concentrate on the silicon-tin alloy for photovoltaic applications due to their bandgap, lower than bulk Si, and also the possibility to activate direct band to band transition for high tin concentration. We synthesized silicon-tin alloy nanocrystals (SiSn-NCs) with diameter of about 2-3 nm by confined plasma technique employing a femtosecond laser irradiation on amorphous silicon-tin substrate submerged in liquid media. The tin concentration is estimated to be [Formula: see text], being the highest Sn concentration for SiSn-NCs reported so far. Our SiSn-NCs have a well-defined zinc-blend structure and, contrary to pure tin NCs, also an excellent thermal stability comparable to highly stable silicon NCs. We demonstrate by means of high resolution synchrotron XRD analysis (SPring 8) that the SiSn-NCs remain stable from room temperature up to [Formula: see text] with a relatively small expansion of the crystal lattice. The high thermal stability observed experimentally is rationalized by means of first-principle calculations.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35849506

RESUMO

The perovskite-Si tandem is an attractive avenue to attain greater power conversion efficiency (PCE) than their respective single-junction solar cells. However, such devices generally employ complex stacks with numerous deposition steps, which are rather unattractive from an industrial perspective. Here, we develop a simplified tandem architecture consisting of a perovskite n-i-p stack on a silicon heterojunction structure without applying the typically used indium-tin-oxide (ITO) recombination junction (RJ) layer between the top and bottom cells. It is demonstrated that an n-type hydrogenated nanocrystalline silicon (nc-Si:H) grown in situ on an amorphous silicon hole contact layer of the bottom cell acts as an efficient RJ layer, leading to a high open-circuit voltage (VOC) of >1.8 V and a PCE of 21.4% without optimizing the optical design. Compared to the tandem cell with an ITO RJ layer, the nc-Si:H RJ layer not only improves light management but also achieves a higher VOC due to superior contact properties with an overlying SnO2 electron transport layer of the perovskite top cell. Omitting the costly material and its deposition step offers the opportunity toward realizing industrially feasible high-efficiency tandem solar cells.

7.
Nanoscale ; 13(28): 12271-12278, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241608

RESUMO

We observe the extraction of carriers excited between two types of bands in the perovskite oxide, Sr-deficient strontium niobate (Sr0.9NbO3). Sr0.9NbO3 exhibits metallic behaviour and high conductivity, whilst also displaying broad absorption across the ultraviolet, visible, and near-infrared spectral regions, making it an attractive material for solar energy conversion. Furthermore, the optoelectronic properties of strontium niobate can easily be tuned by varying the Sr fraction or through doping. Sr-deficient strontium niobate exhibits a split conduction band, which enables two types of optical transitions: intraband and interband. However, whether such carriers can be extracted from an unusual material as such remains unproven. In this report, we have overcome the immense challenge of photocarrier extraction by fabricating an extremely thin absorber layer of Sr0.9NbO3 nanoparticles. These findings open up great opportunities to harvest a very broad solar spectral absorption range with reduced recombination losses.

8.
J Phys Chem Lett ; 11(5): 1721-1728, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32040322

RESUMO

The knowledge of band edges in nanocrystals (NCs) and quantum-confined systems is important for band alignment in technologically significant applications such as water purification, decomposition of organic compounds, water splitting, and solar cells. While the band energy diagram of bulk silicon carbides (SiCs) has been studied extensively for decades, very little is known about its evolution in SiC NCs. Moreover, the interplay between quantum confinement and surface chemistry gives rise to unusual electronic properties and remains barely understood. Here, we report for the first time the complete band energy diagram of SiC NCs synthesized such that they span the regime from strong to intermediate to weak quantum confinement. The absolute positions of the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals show clear size dependence. While the HOMO level follows the expected behavior for quantum-confined electronic states, the LUMO energy shifts below the bulk conduction band minimum, which cannot be explained by a simple quantum confinement caused by the size effect. We show that this effect is a result of the interplay between quantum confinement and the formation of surface states due to partial and site-selective oxygen passivation.

9.
Opt Express ; 17(2): 520-7, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158863

RESUMO

Even with intensive research, air-stable blue light emission from silicon nanocrystals (Si-ncs) at room temperature still remains a challenge. We show that stable and blue-luminescent Si-ncs can be produced by laser-generated plasma (nanosecond-pulsed excimer laser) confined in water. These Si-ncs exhibit quantum confinement effect due to their size and are produced with an environmentally compatible process. The effect of aging for several weeks in water and air on blue Si-ncs emission properties is compared. The oxide shell around the nanocrystalline core formed during laser processing in water offers the required conditions for the confinement of excitons that allow for stable (in either air or water) blue photoluminescence at room temperature.

10.
Nanoscale Adv ; 1(12): 4683-4687, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133124

RESUMO

We report highly stable zero-dimensional (CH3NH3)3Bi2I9 photovoltaic cells which demonstrate a 33% increase in performance after 2 years when hybridized with silicon nanocrystals (SiNCs). The natural oxidation of SiNCs is expected to consume radical species and improve the SiNC/(CH3NH3)3Bi2I9 interface and electronic coupling whilst also inhibiting defect-induced degradation.

11.
Nanoscale Adv ; 1(12): 4915-4925, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133136

RESUMO

We report on a one-step hybrid atmospheric pressure plasma-liquid synthesis of ultra-small NiO nanocrystals (2 nm mean diameter), which exhibit strong quantum confinement. We show the versatility of the synthesis process and present the superior material characteristics of the nanocrystals (NCs). The band diagram of the NiO NCs, obtained experimentally, highlights ideal features for their implementation as a hole transport layer in a wide range of photovoltaic (PV) device architectures. As a proof of concept, we demonstrate the NiO NCs as a hole transport layer for three different PV device test architectures, which incorporate silicon quantum dots (Si-QDs), nitrogen-doped carbon quantum dots (N-CQDs) and perovskite as absorber layers. Our results clearly show ideal band alignment which could lead to improved carrier extraction into the metal contacts for all three solar cells. In addition, in the case of perovskite solar cells, the NiO NC hole transport layer acted as a protective layer preventing the degradation of halide perovskites from ambient moisture with a stable performance for >70 days. Our results also show unique characteristics that are highly suitable for future developments in all-inorganic 3rd generation solar cells (e.g. based on quantum dots) where quantum confinement can be used effectively to tune the band diagram to fit the energy level alignment requirements of different solar cell architectures.

12.
Nanomaterials (Basel) ; 9(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635204

RESUMO

Over the past decade, lead halide perovskites have emerged as one of the leading photovoltaic materials due to their long carrier lifetimes, high absorption coefficients, high tolerance to defects, and facile processing methods. With a bandgap of ~1.6 eV, lead halide perovskite solar cells have achieved power conversion efficiencies in excess of 25%. Despite this, poor material stability along with lead contamination remains a significant barrier to commercialization. Recently, low-dimensional perovskites, where at least one of the structural dimensions is measured on the nanoscale, have demonstrated significantly higher stabilities, and although their power conversion efficiencies are slightly lower, these materials also open up the possibility of quantum-confinement effects such as carrier multiplication. Furthermore, both bulk perovskites and low-dimensional perovskites have been demonstrated to form hybrids with silicon nanocrystals, where numerous device architectures can be exploited to improve efficiency. In this review, we provide an overview of perovskite solar cells, and report the current progress in nanoscale perovskites, such as low-dimensional perovskites, perovskite quantum dots, and perovskite-nanocrystal hybrid solar cells.

13.
Nat Commun ; 10(1): 817, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778052

RESUMO

Nanocrystals sometimes adopt unusual crystal structure configurations in order to maintain structural stability with increasingly large surface-to-volume ratios. The understanding of these transformations is of great scientific interest and represents an opportunity to achieve beneficial materials properties resulting from different crystal arrangements. Here, the phase transformation from α to ß phases of tin (Sn) nanocrystals is investigated in nanocrystals with diameters ranging from 6.1 to 1.6 nm. Ultra-small Sn nanocrystals are achieved through our highly non-equilibrium plasma process operated at atmospheric pressures. Larger nanocrystals adopt the ß-Sn tetragonal structure, while smaller nanocrystals show stability with the α-Sn diamond cubic structure. Synthesis at other conditions produce nanocrystals with mean diameters within the range 2-3 nm, which exhibit mixed phases. This work represents an important contribution to understand structural stability at the nanoscale and the possibility of achieving phases of relevance for many applications.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Estanho/química , Eletroquímica/métodos , Desenho de Equipamento , Microscopia Eletrônica de Transmissão , Nanotecnologia/instrumentação , Temperatura
14.
Nanomaterials (Basel) ; 8(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545138

RESUMO

In this paper, a superior-quality InN/p-GaN interface grown using pulsed metalorganic vapor-phase epitaxy (MOVPE) is demonstrated. The InN/p-GaN heterojunction interface based on high-quality InN (electron concentration 5.19 × 1018 cm-3 and mobility 980 cm²/(V s)) showed good rectifying behavior. The heterojunction depletion region width was estimated to be 22.8 nm and showed the ability for charge carrier extraction without external electrical field (unbiased). Under reverse bias, the external quantum efficiency (EQE) in the blue spectral region (300⁻550 nm) can be enhanced significantly and exceeds unity. Avalanche and carrier multiplication phenomena were used to interpret the exclusive photoelectric features of the InN/p-GaN heterojunction behavior.

15.
Nanoscale ; 9(47): 18759-18771, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29168534

RESUMO

Organometal trihalide perovskite solar cells have attracted monumental attention in recent years. Today's best devices, based on a three-dimensional perovskite structure of corner-sharing PbI6 octahedra, are unstable, toxic, and display hysteresis in current-voltage measurements. We present zero-dimensional organic-inorganic hybrid solar cells based on methylammonium iodo bismuthate (CH3NH3)3(Bi2I9) (MABI) comprising a Bi2I9 bioctahedra and observe very low hysteresis for scan rates in the broad range of 150 mV s-1 to 1500 mV s-1 without any interfacial layer engineering. We confirm good stability for devices produced and stored in open air without humidity control. The MABI structure can also accommodate silicon nanocrystals, leading to an enhancement in the short-circuit current. Through the material MABI, we demonstrate a promising alternative to the organometal trihalide perovskite class and present a model material for future composite third-generation photovoltaics.

16.
Nat Commun ; 8(1): 170, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28761100

RESUMO

A metal-organic hybrid perovskite (CH3NH3PbI3) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH3NH3)3Bi2I9 with nanometre-sized core clusters of Bi2I93- surrounded by insulating CH3NH3+ was prepared via solution processing. The (CH3NH3)3Bi2I9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH3NH3)3Bi2I9.

17.
Sci Rep ; 6: 27727, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27296771

RESUMO

In this work we report on temperature-dependent photoluminescence measurements (15-300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system.

18.
ACS Appl Mater Interfaces ; 8(29): 19012-23, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27362537

RESUMO

Carbon nanotube (CNT) growth has been demonstrated recently using a number of nonmetallic semiconducting and metal oxide nanoparticles, opening up pathways for direct CNT synthesis from a number of more desirable templates without the need for metallic catalysts. However, CNT growth mechanisms using these nonconventional catalysts has been shown to largely differ and reamins a challenging synthesis route. In this contribution we show CNT growth from partially oxidized silicon nanocrystals (Si NCs) that exhibit quantum confinement effects using a microwave plasma enhanced chemical vapor deposition (PECVD) method. On the basis of solvent and a postsynthesis frgamentation process, we show that oxidation of our Si NCs can be easily controlled. We determine experimentally and explain with theoretical simulations that the Si NCs morphology together with a necessary shell oxide of ∼1 nm is vital to allow for the nonmetallic growth of CNTs. On the basis of chemical analysis post-CNT-growth, we give insight into possible mechanisms for CNT nucleation and growth from our partially oxidized Si NCs. This contribution is of significant importance to the improvement of nonmetallic catalysts for CNT growth and the development of Si NC/CNT interfaces.

19.
Nanoscale ; 8(39): 17141-17149, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27722686

RESUMO

Highly size-controllable synthesis of free-standing perfectly crystalline silicon carbide nanocrystals has been achieved for the first time through a plasma-based bottom-up process. This low-cost, scalable, ligand-free atmospheric pressure technique allows fabrication of ultra-small (down to 1.5 nm) nanocrystals with very low level of surface contamination, leading to fundamental insights into optical properties of the nanocrystals. This is also confirmed by their exceptional photoluminescence emission yield enhanced by more than 5 times by reducing the nanocrystals sizes in the range of 1-5 nm, which is attributed to quantum confinement in ultra-small nanocrystals. This method is potentially scalable and readily extendable to a wide range of other classes of materials. Moreover, this ligand-free process can produce colloidal nanocrystals by direct deposition into liquid, onto biological materials or onto the substrate of choice to form nanocrystal films. Our simple but efficient approach based on non-equilibrium plasma environment is a response to the need of most efficient bottom-up processes in nanosynthesis and nanotechnology.

20.
ACS Appl Mater Interfaces ; 7(51): 28207-14, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26624237

RESUMO

Doping of quantum confined nanocrystals offers unique opportunities to control the bandgap and the Fermi energy level. In this contribution, boron-doped (p-doped) and phosphorus-doped (n-doped) quantum confined silicon nanocrystals (SiNCs) are surface-engineered in ethanol by an atmospheric pressure radio frequency microplasma. We reveal that surface chemistries induced on the nanocrystals strongly depend on the type of dopants and result in considerable diverse optoelectronic properties (e.g., photoluminescence quantum yield is enhanced more than 6 times for n-type SiNCs). Changes in the position of the SiNCs Fermi levels are also studied and implications for photovoltaic application are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA