Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Arch Virol ; 167(2): 611-614, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988696

RESUMO

A survey was performed on a Vitis cultivar collection in Stellenbosch, South Africa. Metaviromes were generated for each cultivar, using an RNAtag-seq workflow. Analysis of assembled contigs indicated the presence of two putatively novel members of the genus Vitivirus, provisionally named "grapevine virus N" (GVN) and "grapevine virus O" (GVO). Comparisons of amino acid sequences showed that GVN and GVO are most closely related to grapevine virus G and grapevine virus E, respectively. The incidence of these novel viruses within the sampling site was low, with GVO and GVN associated with only five and two cultivars, respectively, of the 229 sampled.


Assuntos
Flexiviridae , Vitis , Flexiviridae/genética , Genômica , Filogenia , Doenças das Plantas , África do Sul
2.
Arch Virol ; 166(10): 2817-2823, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34279720

RESUMO

Nineteen samples from members of the plant genera Agapanthus, Clivia, Hippeastrum, and Scadoxus were collected from gardens in the Gauteng and Western Cape provinces of South Africa. The plants displayed highly variable symptoms of viral disease, including chlorosis, necrosis, streaking, and ringspot. RNAtag-seq was used to characterize the associated viral populations. Plants of the genus Agapanthus were found to be associated with three novel viruses from the families Caulimoviridae, Closteroviridae, and Betaflexiviridae; plants of the genus Clivia were associated with novel members of the families Potyviridae and Betaflexiviridae; and plants of the genus Scadoxus were associated with a novel member of the family Tospoviridae. Nerine latent virus was associated with plants of the genera Agapanthus, Clivia, and Hippeastrum, while hippeastrum mosaic virus was associated exclusively with a Hippeastrum cultivar.


Assuntos
Amaryllidaceae/virologia , Vírus de Plantas/isolamento & purificação , Amaryllidaceae/classificação , Sequência de Aminoácidos , Genoma Viral/genética , Especificidade de Hospedeiro , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , África do Sul , Proteínas Virais/genética
3.
J Ind Microbiol Biotechnol ; 45(12): 1083-1090, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238272

RESUMO

Actinomycetes are the most important microorganisms for the industrial production of secondary metabolites with antimicrobial and anticancer properties. However, they have not been implicated in biorefineries. Here, we study the ability of the ε-poly-L-lysine producing Streptomyces albulus BCRC 11814 to utilize biodiesel-derived crude glycerol. S. albulus was cultured in a mineral medium supplemented with up to 10% w/v sodium chloride or potassium chloride, and with crude glycerol as the sole carbohydrate source. Under these conditions, the strain produced 0.1 g ε-poly-L-lysine per 1 g of biomass. RNA sequencing revealed upregulation of the ectoine biosynthetic pathway of S. albulus, which provides proof of halotolerance. S. albulus has several silent secondary metabolite biosynthetic clusters predicted within the genome. Based on the results, we conclude that S. albulus BCRC 11814 is a halotolerant microorganism capable of utilizing biodiesel-derived crude glycerol better than other actinomycetes included in the present study. S. albulus has the potential to be established as microbial platform production host for a range of high-value biological products.


Assuntos
Glicerol/química , Polilisina/biossíntese , Cloreto de Sódio/análise , Streptomyces/metabolismo , Diamino Aminoácidos/metabolismo , Biocombustíveis/análise , Biomassa , Carboidratos/análise , Biologia Computacional , Meios de Cultura/química , Fermentação , Perfilação da Expressão Gênica , Cloreto de Potássio/análise , Análise de Sequência de RNA
4.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515161

RESUMO

South Africa is associated with a centuries-old viticultural industry, accompanied by a diverse range of wine and table grape cultivars and an extensive history of pervasive introductions of vine material and associated viruses. The Vitis D2 collection in Stellenbosch represents the most comprehensive collection of Vitis species, hybrids, and cultivars in South Africa. We collected leaf petiole material from 229 accessions from this collection. Our metaviromic analyses revealed a total of 406 complete/near complete genomes of various betaflexiviruses. Among these, we identified the presence of grapevine rupestris stem pitting-associated virus and grapevine viruses A, B, E, F, H (GVH), I (GVI), and M (GVM). Notably, this study marks the first report of GVH, GVI, and GVM in South Africa, which were confirmed via RT-PCR. This research significantly contributes to our understanding of viral diversity and introductions in South African viticulture and emphasizes the need for vigilant monitoring and management of viral infections. Our findings lay the groundwork for strategies that mitigate the impact of viruses on South Africa's wine industry, which generates an annual revenue of approximately 500 million USD.


Assuntos
Vitis , Vinho , África do Sul , Doenças das Plantas , Vinho/análise
5.
Plants (Basel) ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771570

RESUMO

The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.

6.
Life (Basel) ; 11(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34357076

RESUMO

Sorghum is a cereal crop with key agronomic traits of drought and heat stress tolerance, making it an ideal food and industrial commodity for hotter and more arid climates. These stress tolerances also present a useful scientific resource for studying the molecular basis for environmental resilience. Here we provide an extensive review of current transcriptome and proteome works conducted with laboratory, greenhouse, or field-grown sorghum plants exposed to drought, osmotic stress, or treated with the drought stress-regulatory phytohormone, abscisic acid. Large datasets from these studies reveal changes in gene/protein expression across diverse signaling and metabolic pathways. Together, the emerging patterns from these datasets reveal that the overall functional classes of stress-responsive genes/proteins within sorghum are similar to those observed in equivalent studies of other drought-sensitive model species. This highlights a monumental challenge of distinguishing key regulatory genes/proteins, with a primary role in sorghum adaptation to drought, from genes/proteins that change in expression because of stress. Finally, we discuss possible options for taking the research forward. Successful exploitation of sorghum research for implementation in other crops may be critical in establishing climate-resilient agriculture for future food security.

7.
PLoS One ; 16(1): e0244973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476342

RESUMO

South Africa is a megadiverse country with three globally recognised biodiversity hotspots within its borders. Bees in particular show high diversity and endemism in the western part of the country. Not much is currently known about the floral host preferences of indigenous bees in South Africa, with data only available from observational studies. Pollen metabarcoding provides provenance information by utilising DNA analyses instead of floral visitation and traditional microscopic identification to identify pollinator food plants, which can be time consuming and imprecise. In this study, we sampled pollen from leaf-cutter bees (Megachilidae) specimens maintained in a historic insect collection (National Collection of Insects, South Africa) that were originally collected from two florally important areas in South Africa (Succulent Karoo and Savanna) and used metabarcoding to determine pollen provenance. We also sampled pollen from leafcutter bee species with wider distributions, that extend across many different biomes, to determine if these 'generalist' species show relaxed floral host specificity in some biomes. Metabarcoding involved sequencing of the nuclear internal transcribed spacer 2 (ITS2) region. Amplicons were compared to a sequence reference database to assign taxonomic classifications to family level. Sequence reads were also clustered to OTUs based on 97% sequence similarity to estimate numbers of plant species visited. We found no significant difference in the mean number of plant taxa visited in the Succulent Karoo and Savanna regions, but the widespread group visited significantly more floral hosts. Bees from the widespread group were also characterised by a significantly different composition in pollen assemblage. The time since specimens were collected did not have an effect on the mean number of taxa visited by any of the bee species studied. This study highlights national history collections as valuable sources of temporal and spatial biodiversity data.


Assuntos
Abelhas , Biodiversidade , Código de Barras de DNA Taxonômico , Flores , Pólen/genética , Animais , África do Sul , Especificidade da Espécie
8.
PLoS One ; 16(7): e0253741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283859

RESUMO

The corm of Hypoxis hemerocallidea, commonly known as the African potato, is used in traditional medicine to treat several medical conditions such as urinary infections, benign prostate hyperplasia, inflammatory conditions and testicular tumours. The metabolites contributing to the medicinal properties of H. hemerocallidea have been identified in several studies and, more recently, the active terpenoids of the plant were profiled. However, the biosynthetic pathways and the enzymes involved in the production of the terpene metabolites in H. hemerocallidea have not been characterised at a transcriptomic or proteomic level. In this study, total RNA extracted from the corm, leaf and flower tissues of H. hemerocallidea was sequenced on the Illumina HiSeq 2500 platform. A total of 143,549 transcripts were assembled de novo using Trinity and 107,131 transcripts were functionally annotated using the nr, GO, COG, KEGG and SWISS-PROT databases. Additionally, the proteome of the three tissues were sequenced using LC-MS/MS, revealing aspects of secondary metabolism and serving as data validation for the transcriptome. Functional annotation led to the identification of numerous terpene synthases such as nerolidol synthase, germacrene D synthase, and cycloartenol synthase amongst others. Annotations also revealed a transcript encoding the terpene synthase phytoalexin momilactone A synthase. Differential expression analysis using edgeR identified 946 transcripts differentially expressed between the three tissues and revealed that the leaf upregulates linalool synthase compared to the corm and the flower tissues. The transcriptome as well as the proteome of Hypoxis hemerocallidea presented here provide a foundation for future research.


Assuntos
Hypoxis/genética , Proteoma/genética , Proteômica , Transcriptoma/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Solanum tuberosum/genética , Espectrometria de Massas em Tandem
9.
Evol Appl ; 12(2): 187-197, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697333

RESUMO

Pollination is a key component in agricultural food production and ecosystem maintenance, with plant-pollinator interactions an important research theme in ecological and evolutionary studies. Natural history collections provide unique access to samples collected at different spatial and temporal scales. Identification of the plant origins of pollen trapped on the bodies of pollinators in these collections provides insight into historic plant communities and pollinators' preferred floral taxa. In this study, pollen was sampled from Megachile venusta Smith bees from the National Collection of Insects, South Africa, spanning 93 years. Three barcode regions, the internal transcribed spacer 1 and 2 (ITS1 and ITS2) and ribulose-1,5-biphosphate carboxylase (rbcL), were sequenced from mixed pollen samples using a next-generation sequencing approach (MiSeq, Illumina). Sequenced reads were compared to sequence reference databases that were generated by extracting sequence and taxonomic data from GenBank. ITS1 and ITS2 were amplified successfully across all (or most) samples, while rbcL performed inconsistently. Age of sample had no impact on sequencing success. Plant classification was more informative using ITS2 than ITS1 barcode data. This study also highlights the need for comprehensive reference databases as limited local plant sequence representation in reference databases resulted in higher-level taxon classifications being more confidently interpreted. The results showed that small, insect-carried pollen samples from historic bee specimens collected from as early as 1914 can be used to obtain pollen metabarcodes. DNA metabarcoding of mixed origin pollen samples provided a faster, more accurate method of determining pollen provenance, without the need for expert palynologists. The use of historic collections to sample pollen directly from pollinators provided additional value to these collections. Sampling pollen from historic collections can potentially provide the spatial and temporal scales for investigations into changes in plant community structure or pollinator floral choice in the face of global climate change.

10.
Front Microbiol ; 10: 2610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803155

RESUMO

Bacillus velezensis strains are applied as ecologically safe biopesticides, plant growth promoting rhizobacteria (PGPR), and in veterinary probiotics. They are abundant in various environments including soil, plants, marine habitats, the intestinal micro-flora, etc. The mechanisms underlying this adaptive plasticity and bioactivity are not well understood, nor is it clear why several strains outperform other same species isolates by their bioactivities. The main objective of this work was to demonstrate versatility of bioactivities and lifestyle strategies of the selected B. velezensis strains suitable to serve as model organisms in future studies. Here, we performed a comparative study of newly sequenced genomes of four B. velezensis isolates with distinct phenotypes and isolation origin, which were assessed by RNA sequencing under the effect of root exudate stimuli and profiled by epigenetic modifications of chromosomal DNA. Among the selected strains, UCMB5044 is an oligotrophic PGPR strain adapted to nutrient poor desert soils. UCMB5113 and At1 are endophytes that colonize plants and require nutrient rich media. In contrast, the probiotic strain, UCMB5007, is a copiotroph, which shows no propensity to colonize plants. PacBio and Illumina sequencing approaches were used to generate complete genome assemblies, tracing epigenetic modifications, and determine gene expression profiles. All sequence data was deposited at NCBI. The strains, UCMB5113 and At1, show 99% sequence identity and similar phenotypes despite being isolated from geographically distant regions. UCMB5007 and UCMB5044 represent another group of organisms with almost identical genomes but dissimilar phenotypes and plant colonization propensity. The two plant associated strains, UCMB5044 and UCMB5113, share 398 genes putatively associated with root colonization, which are activated by exposure to maize root exudates. In contrast, UCMB5007 did not respond to root exudate stimuli. It was hypothesized that alterations in the global methylation pattern and some other epigenetic modifications enable adaptation of strains to different habitats and therefore may be of importance in terms of the biotechnological applicability of these bacteria. Contrary, the ability to grow on root exudates as a sole source of nutrients or a strong antagonism against phytopathogens showed by the strains in vitro cannot be considered as good predictors of PGPR activities.

11.
Nat Plants ; 5(1): 54-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598532

RESUMO

Domesticated plants and animals often display dramatic responses to selection, but the origins of the genetic diversity underlying these responses remain poorly understood. Despite domestication and improvement bottlenecks, the cultivated sunflower remains highly variable genetically, possibly due to hybridization with wild relatives. To characterize genetic diversity in the sunflower and to quantify contributions from wild relatives, we sequenced 287 cultivated lines, 17 Native American landraces and 189 wild accessions representing 11 compatible wild species. Cultivar sequences failing to map to the sunflower reference were assembled de novo for each genotype to determine the gene repertoire, or 'pan-genome', of the cultivated sunflower. Assembled genes were then compared to the wild species to estimate origins. Results indicate that the cultivated sunflower pan-genome comprises 61,205 genes, of which 27% vary across genotypes. Approximately 10% of the cultivated sunflower pan-genome is derived through introgression from wild sunflower species, and 1.5% of genes originated solely through introgression. Gene ontology functional analyses further indicate that genes associated with biotic resistance are over-represented among introgressed regions, an observation consistent with breeding records. Analyses of allelic variation associated with downy mildew resistance provide an example in which such introgressions have contributed to resistance to a globally challenging disease.


Assuntos
Helianthus/genética , Helianthus/microbiologia , Hibridização Genética , Doenças das Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Resistência à Doença/genética , Ontologia Genética , Genes de Plantas , Variação Genética , Genoma de Planta , Doenças das Plantas/microbiologia , Recombinação Genética , Seleção Genética
12.
Genome Announc ; 3(3)2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953172

RESUMO

Pseudomonas sp. strain 10-1B was isolated from artificially polluted soil after selective enrichment. Its draft genome consists of several predicted genes that are involved in the hydroxylation of the aromatic ring, which is the rate-limiting step in the biodegradation of polycyclic aromatic hydrocarbons.

13.
Genome Announc ; 1(5)2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24009124

RESUMO

Here, we report the draft genome sequence of Streptomyces albulus strain CCRC 11814, a soil-dwelling, Gram-positive bacterium. S. albulus produces ε-poly-l-lysine, which has diverse antimicrobial activity. The genome is 9.43 Mb in size, with a G+C content of 72.2%, and contains 9,177 protein-coding sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA