Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ear Hear ; 41(5): 1270-1281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053546

RESUMO

OBJECTIVES: A cochlear implant (CI) implements a variety of sound processing algorithms that seek to improve speech intelligibility. Typically, only a small number of parameter combinations are evaluated with recipients but the optimal configuration may differ for individuals. The present study evaluates a novel methodology which uses the output signal to noise ratio (OSNR) to predict complete psychometric functions that relate speech recognition to signal to noise ratio for individual CI recipients. DESIGN: Speech scores from sentence-in-noise tests in a "reference" condition were mapped to OSNR and a psychometric function was fitted. The reference variability was defined as the root mean square error between the reference scores and the fitted curve. To predict individual scores in a different condition, OSNRs in that condition were calculated and the corresponding scores were read from the reference psychometric function. In a retrospective experiment, scores were predicted for each condition and subject in three existing data sets of sentence scores. The prediction error was defined as the root mean square error between observed and predicted scores. In data set 1, sentences were mixed with 20 talker babble or speech weighted noise and presented at 65 dB sound pressure level (SPL). An adaptive test procedure was used. Sound processing was advanced combinatorial encoding (ACE, Cochlear Limited) and ACE with ideal binary mask processing, with five different threshold settings. In data set 2, sentences were mixed with speech weighted noise, street-side city noise or cocktail party noise and presented at 65 dB SPL. An adaptive test procedure was used. Sound processing was ACE and ACE with two different noise reduction schemes. In data set 3, sentences were mixed with four-talker babble at two input SNRs and presented at levels of 55-89 dB SPL. Sound processing utilised three different automatic gain control configurations. RESULTS: For data set 1, the median of individual prediction errors across all subjects, noise types and conditions, was 12% points, slightly better than the reference variability. The OSNR prediction method was inaccurate for the specific condition with a gain threshold of +10 dB. For data set 2, the median of individual prediction errors was 17% points and the reference variability was 11% points. For data set 3, the median prediction error was 9% points and the reference variability was 7% points. A Monte Carlo simulation found that the OSNR prediction method, which used reference scores and OSNR to predict individual scores in other conditions, was significantly more accurate (p < 0.01) than simply using reference scores as predictors. CONCLUSIONS: The results supported the hypothesis that the OSNR prediction method could accurately predict individual recipient scores for a range of algorithms and noise types, for all but one condition. The medians of the individual prediction errors for each data set were accurate within 6% points of the reference variability and compared favourably with prediction methodologies in other recent studies. Overall, the novel OSNR-based prediction method shows promise as a tool to assist researchers and clinicians in the development or fitting of CI sound processors.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Humanos , Estudos Retrospectivos , Razão Sinal-Ruído
2.
Ear Hear ; 39(5): 958-968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474218

RESUMO

OBJECTIVES: Cochlear implant (CI) sound processing strategies are usually evaluated in clinical studies involving experienced implant recipients. Metrics which estimate the capacity to perceive speech for a given set of audio and processing conditions provide an alternative means to assess the effectiveness of processing strategies. The aim of this research was to assess the ability of the output signal to noise ratio (OSNR) to accurately predict speech perception. It was hypothesized that compared with the other metrics evaluated in this study (1) OSNR would have equivalent or better accuracy and (2) OSNR would be the most accurate in the presence of variable levels of speech presentation. DESIGN: For the first time, the accuracy of OSNR as a metric which predicts speech intelligibility was compared, in a retrospective study, with that of the input signal to noise ratio (ISNR) and the short-term objective intelligibility (STOI) metric. Because STOI measured audio quality at the input to a CI sound processor, a vocoder was applied to the sound processor output and STOI was also calculated for the reconstructed audio signal (vocoder short-term objective intelligibility [VSTOI] metric). The figures of merit calculated for each metric were Pearson correlation of the metric and a psychometric function fitted to sentence scores at each predictor value (Pearson sigmoidal correlation [PSIG]), epsilon insensitive root mean square error (RMSE*) of the psychometric function and the sentence scores, and the statistical deviance of the fitted curve to the sentence scores (D). Sentence scores were taken from three existing data sets of Australian Sentence Tests in Noise results. The AuSTIN tests were conducted with experienced users of the Nucleus CI system. The score for each sentence was the proportion of morphemes the participant correctly repeated. In data set 1, all sentences were presented at 65 dB sound pressure level (SPL) in the presence of four-talker Babble noise. Each block of sentences used an adaptive procedure, with the speech presented at a fixed level and the ISNR varied. In data set 2, sentences were presented at 65 dB SPL in the presence of stationary speech weighted noise, street-side city noise, and cocktail party noise. An adaptive ISNR procedure was used. In data set 3, sentences were presented at levels ranging from 55 to 89 dB SPL with two automatic gain control configurations and two fixed ISNRs. RESULTS: For data set 1, the ISNR and OSNR were equally most accurate. STOI was significantly different for deviance (p = 0.045) and RMSE* (p < 0.001). VSTOI was significantly different for RMSE* (p < 0.001). For data set 2, ISNR and OSNR had an equivalent accuracy which was significantly better than that of STOI for PSIG (p = 0.029) and VSTOI for deviance (p = 0.001), RMSE*, and PSIG (both p < 0.001). For data set 3, OSNR was the most accurate metric and was significantly more accurate than VSTOI for deviance, RMSE*, and PSIG (all p < 0.001). ISNR and STOI were unable to predict the sentence scores for this data set. CONCLUSIONS: The study results supported the hypotheses. OSNR was found to have an accuracy equivalent to or better than ISNR, STOI, and VSTOI for tests conducted at a fixed presentation level and variable ISNR. OSNR was a more accurate metric than VSTOI for tests with fixed ISNRs and variable presentation levels. Overall, OSNR was the most accurate metric across the three data sets. OSNR holds promise as a prediction metric which could potentially improve the effectiveness of sound processor research and CI fitting.


Assuntos
Implantes Cocleares , Razão Sinal-Ruído , Inteligibilidade da Fala , Percepção da Fala , Conjuntos de Dados como Assunto , Humanos , Mascaramento Perceptivo , Estudos Retrospectivos
3.
Ear Hear ; 34(5): 592-600, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23598772

RESUMO

OBJECTIVES: The aim of this research is to describe the development of an adaptive Australian Sentence Test in Noise and to validate the test in terms of test-retest reliability and efficiency using data obtained from its clinical application. DESIGN: The relative intelligibility of 1264 Bamford-Kowal-Bench (BKB)-like sentences in the presence of competing four-talker babble was assessed with cochlear implant recipients. Intensity adjustments to the babble segments were made to reduce intersentence variability. Computer software was developed to administer an adaptive speech reception threshold (SRT) test using these adjusted sentence/babble pairs and test-retest SRT data from a separate group of 23 cochlear implant recipients was analyzed, comparing different SRT calculation and test stopping rules. RESULTS: The adjusted sentence/babble pairs were used in clinical studies to obtain an SRT by presenting 32 sentences. Analysis of test-retest pairs of SRT data from 23 recipients indicated that a psychometric fit SRT calculation rule provided better reliability than did the Hearing in Noise Test (HINT) calculation rule, or rules based on mean turns. This rule, using the morpheme correct scores for each sentence, gave a standard deviation for a single SRT of 0.76 dB. Further analyses revealed that the test could be shortened to 20 sentences with an increase of 0.19 dB in variability, while reducing the median test time by approximately 2 min. CONCLUSIONS: This article reports validation data for a new Australian Sentence Test In Noise. When 20 BKB-like sentences are used with a psychometric fit calculation rule, a standard deviation of approximately 1 dB is obtained in approximately 3 min 36 sec.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva/reabilitação , Percepção da Fala , Teste do Limiar de Recepção da Fala/métodos , Idoso , Idoso de 80 Anos ou mais , Austrália , Humanos , Pessoa de Meia-Idade , Ruído , Fonética , Psicoacústica , Reprodutibilidade dos Testes , Estudos Retrospectivos , Teste do Limiar de Recepção da Fala/normas
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1801-1804, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946246

RESUMO

Output Signal to Noise Ratio (OSNR) is the Signal to Noise Ratio (SNR) at the output of a cochlear implant (CI) sound processor. Whereas other prediction metrics typically predict mean speech-in-noise test scores for a group of subjects, an OSNR-based model has been shown to accurately predict scores for individual CI recipients. The OSNR model was unable to predict scores for aggressive Ideal Binary Mask (IdBM) sound processing. This algorithm calculated Input Signal to Noise Ratio (ISNR), in each CI channel, and applied a gain function to suppress noise when a gain threshold was exceeded.The current study investigated the effect of IdBM processing on the separate speech and noise signals to determine whether audibility was affecting intelligibility. A novel metric, "OSNR and Power" (OSNRP), which combined the effect of the reduction in output speech power with OSNR, was proposed.It was found that the IdBM reduced the output speech level, likely causing audibility issues, at poor ISNRs. OSNRP accurately predicted individual speech-in-noise test scores for aggressive IdBM.The novel OSNRP metric has potential as a tool for calculating optimum configurations for sound processor parameter settings for individual CI recipients. We propose using a prescribed set of reference test conditions, the results of which can be utilized to predict outcomes when using alternative sound processing parameters and techniques, and to tailor them to the individual needs of individual CI recipients.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Humanos , Ruído , Razão Sinal-Ruído
5.
Front Neurosci ; 13: 1266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849583

RESUMO

The present study compared pitch and melody perception using cochlear place of excitation and temporal cues in six adult nucleus cochlear implant (CI) recipients. The stimuli were synthesized tones presented through a loudspeaker, and recipients used the Advanced Combinational Encoder (ACE) sound coding strategy on their own sound processors. Three types of tones were used, denoted H3, H4, and P5. H3 tones were harmonic tones with fundamental frequencies in the range C3-C4 (131-262 Hz), providing temporal pitch cues alone. H4 tones were harmonic tones with fundamental frequencies in the range C4-C5 (262-523 Hz), providing a mixture of temporal and place cues. P5 tones were pure tones with fundamental frequencies in the range C5-C6 (523-1046 Hz), providing place pitch cues alone. Four experimental procedures were used: pitch discrimination, pitch ranking, backward modified melodies, and warped modified melodies. In each trial of the modified melodies tests, subjects heard a familiar melody and a version with modified pitch (in randomized order), and had to select the unmodified melody. In all four procedures, many scores were much lower than would be expected for normal hearing listeners, implying that the strength of the perceived pitch was weak. Discrimination and ranking with H3 and P5 tones was poor for two-semitone intervals, but near perfect for intervals of five semitones and larger. H4 tones provided the lowest group mean scores in all four procedures, with some pitch reversals observed in pitch ranking. Group mean scores for P5 tones (place cues alone) were at least as high as those for H3 tones (temporal cues alone). The relatively good scores on the melody tasks with P5 tones were surprising, given the lack of temporal cues, raising the possibility of musical pitch using place cues alone. However, the alternative possibility that the CI recipients perceived the place cues as brightness, rather than musical pitch per se, cannot be excluded. These findings show that pitch perception models need to incorporate neural place representations alongside temporal cues if they are to predict pitch and melody perception in the absence of temporal cues.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1206-1209, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440606

RESUMO

Measurement of speech intelligibility of cochlear implant (CI) recipients is typically carried out with a speech-innoise test procedure. Metrics which predict speech intelligibility can pre-screen new sound processing strategies prior to comprehensive testing with human subjects.The Output Signal to Noise Ratio (OSNR) metric calculates the Signal to Noise Ratio (SNR) which is present at the CI sound processor output. Watkins et al. (2018) found OSNR was an accurate predictor of speech intelligibility that could predict intelligibility in scenarios where other predictors could not.The current study investigated the effect of the sound processor automatic gain control (AGC) on OSNR and a simplified metric, Separate gain SNR (SSNR), which calculated the SNR at the CI output, assuming no interaction between the signal and noise in the sound processor. Prediction accuracy of OSNR was compared to that of Input SNR and SSNR.It was found that AGC-induced distortion and SNR degradation in speech gaps worsened OSNR. For scenarios with significant non-linear, time-varying processing, OSNR was the most accurate prediction metric. SSNR was found to be an inaccurate predictor.


Assuntos
Implantes Cocleares , Razão Sinal-Ruído , Inteligibilidade da Fala , Percepção da Fala , Implante Coclear , Humanos
7.
Trends Hear ; 202016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27094028

RESUMO

Six Nucleus cochlear implant recipients participated in a study investigating the effect of place of stimulation on melody perception using rate-pitch cues. Each stimulus was a pulse train delivered on either a single electrode or multiple electrodes sequentially. Four spatial stimulation patterns were used: a single apical electrode, a single mid electrode, a pair of electrodes (apical and mid), and 11 electrodes (from apical to mid). Within one block of trials, all stimuli had the same spatial stimulation pattern, with pulse rate varying from 131 to 262 pps. An additional pulse rate range of 262 to 523 pps was tested with the single-electrode stimuli. Two experimental procedures were used: note ranking; and a modified melodies test with backwards and warp modification. In each trial of the modified melodies test, a familiar melody and a version with modified pitch were presented (in random order), and the subject's task was to select the unmodified melody. There were no significant differences in performance for stimulation on 1, 2, or 11 electrodes, implying that recipients were unable to combine temporal information from different places in the cochlea to give a stronger pitch cue. No advantage of apical electrodes was found: at the lower pulse rates, there were no significant differences between electrodes; and at the higher pulse rates, scores on the apical electrode dropped more than those on the mid electrode.


Assuntos
Cóclea/inervação , Implante Coclear/instrumentação , Implantes Cocleares , Perda Auditiva Neurossensorial/reabilitação , Percepção da Altura Sonora , Estimulação Acústica , Adolescente , Adulto , Audiometria de Tons Puros , Vias Auditivas/fisiopatologia , Limiar Auditivo , Estudos de Casos e Controles , Implante Coclear/métodos , Sinais (Psicologia) , Feminino , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/fisiopatologia , Perda Auditiva Neurossensorial/psicologia , Humanos , Masculino , Ruído/efeitos adversos , Reconhecimento Fisiológico de Modelo , Mascaramento Perceptivo , Discriminação da Altura Tonal , Desenho de Prótese , Resultado do Tratamento , Adulto Jovem
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4715-4718, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269324

RESUMO

In the study of auditory prostheses, the Speech Recognition Threshold (SRT) is the Signal to Noise Ratio (SNR) at which 50% of words are correctly identified. SRT is typically measured using an adaptive procedure wherein speech is presented at a fixed sound pressure level (SPL) and the noise level is varied according to the subject's responses. A roving level SRT test has been used by researchers with the goal of including the effectiveness of Automatic Gain Control (AGC) systems in SRT measurements. The roving method presents speech at three different SPLs with the level for each sentence chosen pseudo-randomly, while adaptively varying the SNR. This study used simulations to compare roving and fixed level SRT tests. It was found that roving level tests have significantly increased variability when there are level-dependent differences in subject scores. The interleaved level test is recommended as an alternative as it provides clear visibility of level-dependent performance and a better understanding of overall subject performance.


Assuntos
Simulação por Computador , Testes Auditivos/métodos , Adulto , Limiar Auditivo/fisiologia , Implantes Cocleares , Humanos , Razão Sinal-Ruído , Fala , Percepção da Fala
9.
PLoS One ; 10(7): e0132409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147290

RESUMO

Speech intelligibility tests are conducted on hearing-impaired people for the purpose of evaluating the performance of a hearing device under varying listening conditions and device settings or algorithms. The speech reception threshold (SRT) is typically defined as the signal-to-noise ratio (SNR) at which a subject scores 50% correct on a speech intelligibility test. An SRT is conventionally measured with an adaptive procedure, in which the SNR of successive sentences is adjusted based on the subject's scores on previous sentences. The SRT can be estimated as the mean of a subset of the SNR levels, or by fitting a psychometric function. A set of SRT results is typically analyzed with a repeated measures analysis of variance. We propose an alternative approach for analysis, a zero-and-one inflated beta regression model, in which an observation is a single sentence score rather than an SRT. A parametrization of the model is defined that allows efficient maximum likelihood estimation of the parameters. Fitted values from this model, when plotted against SNR, are analogous to a mean psychometric function in the traditional approach. Confidence intervals for the fitted value curves are obtained by parametric bootstrap. The proposed approach was applied retrospectively to data from two studies that assessed the speech perception of cochlear implant recipients using different sound processing algorithms under different listening conditions. The proposed approach yielded mean SRTs for each condition that were consistent with the traditional approach, but were more informative. It provided the mean psychometric curve of each condition, revealing differences in slope, i.e. differential performance at different parts of the SNR spectrum. Another advantage of the new method of analysis is that results are stated in terms of differences in percent correct scores, which is more interpretable than results from the traditional analysis.


Assuntos
Algoritmos , Testes de Linguagem , Modelos Estatísticos , Razão Sinal-Ruído , Inteligibilidade da Fala , Feminino , Humanos , Masculino
10.
J Assoc Res Otolaryngol ; 16(3): 401-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25742726

RESUMO

In today's cochlear implant (CI) systems, the monopolar (MP) electrode configuration is the most commonly used stimulation mode, requiring only a single current source. However, with an implant that will allow simultaneous activation of multiple independent current sources, it is possible to implement an all-polar (AP) stimulation mode designed to create a focused electrical field. The goal of this experiment was to study the potential benefits of this all-polar mode for reducing uncontrolled electrode interactions compared with the monopolar mode. The five participants who took part in the study were implanted with a research device that was connected via a percutaneous connector to a benchtop stimulator providing 22 independent current sources. The perceptual effects of the AP mode were tested in three experiments. In Experiment 1, the current level difference between loudness-matched sequential and simultaneous stimuli composed of 2 spatially separated pulse trains was measured as function of the electrode separation. Results indicated a strong current-summation interaction for simultaneous stimuli in the MP mode for separations up to at least 4.8 mm. No significant interaction was found in the AP mode beyond a separation of 2.4 mm. In Experiment 2, a forward-masking paradigm was used with fixed equally loud probes in AP and MP modes, and AP maskers presented on different electrode positions. Results indicated a similar spatial masking pattern between modes. In Experiment 3, subjects were asked to discriminate between across-electrode temporal delays. It was hypothesized that discrimination would decrease with electrode separation faster in AP compared to MP modes. However, results showed no difference between the two modes. Overall, the results indicated that the AP mode produced less current spread than MP mode but did not lead to a significant advantage in terms of spread of neuronal excitation at equally loud levels.


Assuntos
Cóclea/fisiologia , Percepção Sonora , Adulto , Idoso , Estimulação Elétrica , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mascaramento Perceptivo
11.
PLoS One ; 8(11): e82263, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312408

RESUMO

Nucleus cochlear implant systems incorporate a fast-acting front-end automatic gain control (AGC), sometimes called a compression limiter. The objective of the present study was to determine the effect of replacing the front-end compression limiter with a newly proposed envelope profile limiter. A secondary objective was to investigate the effect of AGC speed on cochlear implant speech intelligibility. The envelope profile limiter was located after the filter bank and reduced the gain when the largest of the filter bank envelopes exceeded the compression threshold. The compression threshold was set equal to the saturation level of the loudness growth function (i.e. the envelope level that mapped to the maximum comfortable current level), ensuring that no envelope clipping occurred. To preserve the spectral profile, the same gain was applied to all channels. Experiment 1 compared sentence recognition with the front-end limiter and with the envelope profile limiter, each with two release times (75 and 625 ms). Six implant recipients were tested in quiet and in four-talker babble noise, at a high presentation level of 89 dB SPL. Overall, release time had a larger effect than the AGC type. With both AGC types, speech intelligibility was lower for the 75 ms release time than for the 625 ms release time. With the shorter release time, the envelope profile limiter provided higher group mean scores than the front-end limiter in quiet, but there was no significant difference in noise. Experiment 2 measured sentence recognition in noise as a function of presentation level, from 55 to 89 dB SPL. The envelope profile limiter with 625 ms release time yielded better scores than the front-end limiter with 75 ms release time. A take-home study showed no clear pattern of preferences. It is concluded that the envelope profile limiter is a feasible alternative to a front-end compression limiter.


Assuntos
Implantes Cocleares , Percepção da Fala , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA