Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anal Bioanal Chem ; 411(19): 4661-4671, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30953113

RESUMO

The renin-angiotensin system (RAS) of the brain produces a series of biologically active angiotensinogen-derived peptides involved in physiological homeostasis and pathophysiology of disease. Despite significant research efforts to date, a comprehensive understanding of brain RAS physiology is lacking. A significant challenge has been the limited set of bioanalytical assays capable of detecting angiotensin (Ang) peptides at physiologically low concentrations (2-15 fmol/g of wet tissue) and sufficient chemical specificity for unambiguous molecular identifications. Additionally, a complex brain anatomy calls for microanalysis of specific tissue regions, thus further taxing sensitivity requirements for identification and quantification in studies of the RAS. To fill this technology gap, we here developed a microanalytical assay by coupling a laboratory-built capillary electrophoresis (CE) nano-electrospray ionization (nano-ESI) platform to a high-resolution mass spectrometer (HRMS). Using parallel reaction monitoring, we demonstrated that this technology achieved confident identification and quantification of the Ang peptides at approx. 5 amol to 300 zmol sensitivity. This microanalytical assay revealed differential Ang peptide profiles between tissues that were micro-sampled from the subfornical organ and the paraventricular nucleus of the hypothalamus, important brain regions involved in thirst and water homeostasis and neuroendocrine regulation to stress. Microanalytical CE-nano-ESI-HRMS extends the analytical toolbox of neuroscience to help better understand the RAS.


Assuntos
Angiotensinas/metabolismo , Encéfalo/metabolismo , Eletroforese Capilar/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito
3.
Biol Psychiatry Glob Open Sci ; 4(1): 203-212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298799

RESUMO

Background: There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods: Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results: MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions: These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.

4.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37886449

RESUMO

There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11ß-hydroxysteroid dehydrogenase (11ß-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.

5.
Physiol Behav ; 236: 113414, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819454

RESUMO

To further understand mechanisms of neuropsychiatric disease(s) and their impact on physiological systems, improved pre-clinical models and innovative methodology are needed to assess the internal physiological state of the animal in real-time. To address this challenge we developed a customizable software-based program for Ponemah™ that takes into account the animals diurnal and resting cardiovascular state in a home-cage environment. Using an integrated Pavlovian fear conditioning and cardiovascular telemetry approach in mice, we demonstrate for the first time a novel software add-on application that can remotely trigger a conditioned stimulus (CS) (i.e., audible tone) based on the animals instantaneous cardiovascular state while in its home-cage environment. This new software tool extends the ability to quantify integrated physiological correlates of learned threat and defensive behavior and may aid in further understanding mechanisms related to enhanced cardiovascular and autonomic arousal in anxiety-based disorders.


Assuntos
Condicionamento Clássico , Medo , Animais , Nível de Alerta , Condicionamento Operante , Camundongos , Telemetria
6.
Transl Psychiatry ; 10(1): 363, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110066

RESUMO

Inhibition of the angiotensin type 1 receptor (AT1R) has been shown to decrease fear responses in both humans and rodents. These effects are attributed to modulation of extinction learning, however the contribution of AT1R to alternative memory processes remains unclear. Using classic Pavlovian conditioning combined with radiotelemetry and whole-genome RNA sequencing, we evaluated the effects of the AT1R antagonist losartan on fear memory reconsolidation. Following the retrieval of conditioned auditory fear memory, animals were given a single intraperitoneal injection of losartan or saline. In response to the conditioned stimulus (CS), losartan-treated animals exhibited significantly less freezing at 24 h and 1 week; an effect that was dependent upon memory reactivation and independent of conditioned cardiovascular reactivity. Using an unbiased whole-genome RNA sequencing approach, transcriptomic analysis of the basolateral amygdala (BLA) identified losartan-dependent differences in gene expression during the reconsolidation phase. These findings demonstrate that post-retrieval losartan modifies behavioral and transcriptomic markers of conditioned fear memory, supporting an important regulatory role for this receptor in reconsolidation and as a potential pharmacotherapeutic target for maladaptive fear disorders such as PTSD.


Assuntos
Tonsila do Cerebelo , Receptor Tipo 1 de Angiotensina , Animais , Condicionamento Clássico , Extinção Psicológica , Medo , Memória
7.
J Psychiatr Res ; 124: 85-90, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126364

RESUMO

BACKGROUND: Trauma and symptoms of posttraumatic stress disorder (PTSD) have repeatedly been linked to impaired cardiovascular functioning. Poor fear extinction is a well-established biomarker of PTSD that may provide insight into mechanisms underlying cardiovascular risk. The current study probed the cardiovascular response to extinction in a sample of trauma-exposed individuals. METHODS: Participants were 51 trauma-exposed women who underwent a fear conditioning paradigm. Heart rate (HR) during extinction was examined in response to a conditioned stimulus that was previously paired with an aversive unconditioned stimulus (CS+) and one that was never paired (CS-). Heart rate variability (HRV) was calculated at baseline and during the extinction session. RESULTS: Consistent with fear bradycardia, initial HR deceleration (.5-2s) after CS + onset occurred during early extinction and appeared to extinguish over time. Higher baseline HRV was significantly associated with greater fear bradycardia during early extinction. CONCLUSIONS: This is the first study to demonstrate a pattern of fear bradycardia in early extinction, which was associated with higher HRV levels and decreased over the course of the extinction phase. These results suggest that increased fear bradycardia may be indicative of greater vagal control (i.e., HRV), both of which are psychophysiological biomarkers that may influence cardiovascular and autonomic disease risk in trauma-exposed individuals.


Assuntos
Extinção Psicológica , Transtornos de Estresse Pós-Traumáticos , Condicionamento Clássico , Medo , Feminino , Frequência Cardíaca , Humanos
8.
Biol Psychiatry ; 86(12): 899-909, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420088

RESUMO

BACKGROUND: The renin-angiotensin system has been implicated in posttraumatic stress disorder; however, the mechanisms responsible for this connection and the therapeutic potential of targeting the renin-angiotensin system in posttraumatic stress disorder remain unknown. Using an angiotensin receptor bacterial artificial chromosome (BAC) and enhanced green fluorescent protein (eGFP) reporter mouse, combined with neuroanatomical, pharmacological, and behavioral approaches, we examined the role of angiotensin II type 2 receptor (AT2R) in fear-related behavior. METHODS: Dual immunohistochemistry with retrograde labeling was used to characterize AT2R-eGFP+ cells in the amygdala of the AT2R-eGFP-BAC reporter mouse. Pavlovian fear conditioning and behavioral pharmacological analyses were used to demonstrate the effects of AT2R activation on fear memory in male C57BL/6 mice. RESULTS: AT2R-eGFP+ neurons in the amygdala were predominantly expressed in the medial amygdala and the medial division of the central amygdala (CeM), with little AT2R-eGFP expression in the basolateral amygdala or lateral division of the central amygdala. Characterization of AT2R-eGFP+ neurons in the CeM demonstrated distinct localization to gamma-aminobutyric acidergic projection neurons. Mice receiving acute intra-central amygdala injections of the selective AT2R agonist compound 21 prior to tests for cued or contextual fear expression displayed less freezing. Retrograde labeling of AT2R-eGFP+ neurons projecting to the periaqueductal gray revealed AT2R-eGFP+ neuronal projections from the CeM to the periaqueductal gray, a key brain structure mediating fear-related freezing. CONCLUSIONS: These findings suggest that CeM AT2R-expressing neurons can modulate central amygdala outputs that play a role in fear expression, providing new evidence for a novel angiotensinergic circuit in the regulation of fear.


Assuntos
Núcleo Central da Amígdala/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Ansiedade/fisiopatologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/metabolismo , Condicionamento Clássico , Corticosterona/sangue , Locomoção , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/citologia , Receptor Tipo 2 de Angiotensina/metabolismo
9.
Front Behav Neurosci ; 12: 276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483079

RESUMO

Post-traumatic stress disorder (PTSD) is characterized by a heightened emotional and physiological state and an impaired ability to suppress or extinguish traumatic fear memories. Exaggerated physiological responses may contribute to increased cardiovascular disease (CVD) risk in this population, but whether treatment for PTSD can offset CVD risk remains unknown. To further evaluate physiological correlates of fear learning, we used a novel pre-clinical conditioned cardiovascular testing paradigm and examined the effects of Pavlovian fear conditioning and extinction training on mean arterial pressure (MAP) and heart rate (HR) responses. We hypothesized that a fear conditioned cardiovascular response could be detected in a novel context and attenuated by extinction training. In a novel context, fear conditioned mice exhibited marginal increases in MAP (∼3 mmHg) and decreases in HR (∼20 bpm) during CS presentation. In a home cage context, the CS elicited significant increases in both HR (100 bpm) and MAP (20 mmHg). Following extinction training, the MAP response was suppressed while CS-dependent HR responses were variable. These pre-clinical data suggest that extinction learning attenuates the acute MAP responses to conditioned stimuli over time, and that MAP and HR responses may extinguish at different rates. These results suggest that in mouse models of fear learning, conditioned cardiovascular responses are modified by extinction training. Understanding these processes in pre-clinical disease models and in humans with PTSD may be important for identifying interventions that facilitate fear extinction and attenuate hyper-physiological responses, potentially leading to improvements in the efficacy of exposure therapy and PTSD-CVD comorbidity outcomes.

10.
Psychoneuroendocrinology ; 94: 143-151, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29783162

RESUMO

Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired.


Assuntos
Medo/fisiologia , Memória/fisiologia , Estresse Psicológico/imunologia , Animais , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Extinção Psicológica/fisiologia , Interleucina-6/análise , Interleucina-6/metabolismo , Masculino , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/fisiologia , Transtornos de Estresse Pós-Traumáticos/imunologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA