RESUMO
The role of humans in shaping local ecosystems is an increasing focus of archaeological research, yet researchers often lack an appropriate means of measuring past anthropogenic effects on local food webs and nutrient cycling. Stable isotope analysis of commensal animals provides an effective proxy for local human environments because these species are closely associated with human activities without being under direct human management. Such species are thus central to nutrient flows across a range of socionatural environments and can provide insight into how they intersected and transformed over time. Here we measure and compare stable carbon and nitrogen isotope data from Pacific rat (Rattus exulans) skeletal remains across three Polynesian island systems [Mangareva, Ua Huka (Marquesas), and the Polynesian Outlier of Tikopia] during one of the most significant cases of human migration and commensal introduction in prehistory. The results demonstrate widespread δ15N declines across these islands that are associated with human land use, intensification, and faunal community restructuring. Local comparison of rat stable isotope data also tracks human activities and resource availability at the level of the settlement. Our results highlight the large-scale restructuring of nutrient flows in island ecosystems that resulted from human colonization and ecosystem engineering activities on Pacific islands. They also demonstrate that stable isotope analysis of often-ignored commensal taxa can provide a tool for tracking human land use and environmental effects.
Assuntos
Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/química , Animais , Carbono/química , Ecossistema , Alimentos , Cadeia Alimentar , Humanos , Ilhas do Pacífico , RatosRESUMO
Drivers of Late Quaternary megafaunal extinctions are relevant to modern conservation policy in a world of growing human population density, climate change, and faunal decline. Traditional debates tend toward global solutions, blaming either dramatic climate change or dispersals of Homo sapiens to new regions. Inherent limitations to archaeological and paleontological data sets often require reliance on scant, poorly resolved lines of evidence. However, recent developments in scientific technologies allow for more local, context-specific approaches. In the present article, we highlight how developments in five such methodologies (radiocarbon approaches, stable isotope analysis, ancient DNA, ancient proteomics, microscopy) have helped drive detailed analysis of specific megafaunal species, their particular ecological settings, and responses to new competitors or predators, climate change, and other external phenomena. The detailed case studies of faunal community composition, extinction chronologies, and demographic trends enabled by these methods examine megafaunal extinctions at scales appropriate for practical understanding of threats against particular species in their habitats today.
RESUMO
Stable isotope analysis has been utilized in archaeology since the 1970s, yet standardized protocols for terminology, sampling, pretreatment evaluation, calibration, quality assurance and control, data presentation, and graphical or statistical treatment still remain lacking in archaeological applications. Here, we present recommendations and requirements for each of these in the archaeological context of: bulk stable carbon and nitrogen isotope analysis of organics; bulk stable carbon and oxygen isotope analysis of carbonates; single compound stable carbon and nitrogen isotope analysis on amino acids in collagen and keratin; and single compound stable carbon and hydrogen isotope analysis on fatty acids. The protocols are based on recommendations from the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) as well as an expanding geochemical and archaeological science experimental literature. We hope that this will provide a useful future reference for authors and reviewers engaging with the growing number of stable isotope applications and datasets in archaeology.
RESUMO
Domestic pigs (Sus scrofa) were first transported to Polynesia through a series of long-distance voyages ultimately linked to the Neolithic expansion of Austronesian-speaking people out of Asia. The descendants of the founding pigs belong to a rare mtDNA group referred to as the "Pacific Clade" that may have originated in peninsular or island Southeast Asia. We report the first whole genome mtDNA from domestic pigs from any of the remote islands of the Pacific. In this brief report, we describe the close link we discovered between ancient mtDNA from archaeological specimens from across Polynesia and from that of modern pigs in northern peninsular Southeast Asia, specifically southern China's Yunnan Province. More complete mtDNA coverage in commensal animals is necessary to improve our picture of the settlement of Polynesia (ca. 2800-700 years before the present) and specify the route, or routes, that pigs took from northern peninsular Southeast Asia.
RESUMO
The human colonization of eastern Africa's near- and offshore islands was accompanied by the translocation of several domestic, wild and commensal fauna, many of which had long-term impacts on local environments. To better understand the timing and nature of the introduction of domesticated caprines (sheep and goat) to these islands, this study applied collagen peptide fingerprinting (Zooarchaeology by Mass Spectrometry or ZooMS) to archaeological remains from eight Iron Age sites, dating between ca 300 and 1000 CE, in the Zanzibar, Mafia and Comoros archipelagos. Where previous zooarchaeological analyses had identified caprine remains at four of these sites, this study identified goat at seven sites and sheep at three, demonstrating that caprines were more widespread than previously known. The ZooMS results support an introduction of goats to island eastern Africa from at least the seventh century CE, while sheep in our sample arrived one-two centuries later. Goats may have been preferred because, as browsers, they were better adapted to the islands' environments. The results allow for a more accurate understanding of early caprine husbandry in the study region and provide a critical archaeological baseline for examining the potential long-term impacts of translocated fauna on island ecologies.
RESUMO
Chemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C3 and C4 foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events. We conducted bulk stable-isotope analysis and lipid residue analysis on the charred food macro-remains, carbonized thin layer organic patina residues and absorbed lipids over the course of the experiment. Our results indicate that: (1) the composition of charred macro-remains represent the final foodstuffs cooked within vessels, (2) thin-layer patina residues represent a mixture of previous cooking events with bias towards the final product(s) cooked in the pot, and (3) absorbed lipid residues are developed over a number of cooking events and are replaced slowly over time, with little evidence of the final recipe ingredients.
Assuntos
Radioisótopos de Carbono/análise , Culinária/métodos , Análise de Alimentos/métodos , Lipídeos/análise , Radioisótopos de Nitrogênio/análise , Arqueologia , Humanos , Fatores de TempoRESUMO
Stable carbon and oxygen isotope analysis of human and animal tooth enamel carbonate has been applied in paleodietary, paleoecological, and paleoenvironmental research from recent historical periods back to over 10 million years ago. Bulk approaches provide a representative sample for the period of enamel mineralization, while sequential samples within a tooth can track dietary and environmental changes during this period. While these methodologies have been widely applied and described in archaeology, ecology, and paleontology, there have been no explicit guidelines to aid in the selection of necessary lab equipment and to thoroughly describe detailed laboratory sampling and protocols. In this article, we document textually and visually, the entire process from sampling through pretreatment and diagenetic screening to make the methodology more widely available to researchers considering its application in a variety of laboratory settings.