RESUMO
Cancer-associated thrombosis is a common first presenting sign of malignancy and is currently the second leading cause of death in cancer patients after their malignancy. However, the molecular mechanisms underlying cancer-associated thrombosis remain undefined. In this study, we aimed to develop a better understanding of how cancer cells affect the coagulation cascade and platelet activation to induce a prothrombotic phenotype. Our results show that colon cancer cells trigger platelet activation in a manner dependent on cancer cell tissue factor (TF) expression, thrombin generation, activation of the protease-activated receptor 4 (PAR4) on platelets and consequent release of ADP and thromboxane A2. Platelet-colon cancer cell interactions potentiated the release of platelet-derived extracellular vesicles (EVs) rather than cancer cell-derived EVs. Our data show that single colon cancer cells were capable of recruiting and activating platelets and generating fibrin in plasma under shear flow. Finally, in a retrospective analysis of colon cancer patients, we found that the number of venous thromboembolism events was 4.5 times higher in colon cancer patients than in a control population. In conclusion, our data suggest that platelet-cancer cell interactions and perhaps platelet procoagulant EVs may contribute to the prothrombotic phenotype of colon cancer patients. Our work may provide rationale for targeting platelet-cancer cell interactions with PAR4 antagonists together with aspirin and/or ADP receptor antagonists as a potential intervention to limit cancer-associated thrombosis, balancing safety with efficacy.
Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Neoplasias do Colo/sangue , Trombose/sangue , Plaquetas/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Estudos Transversais , Humanos , Estudos Retrospectivos , Trombose/patologiaRESUMO
Cancer metastasis is a dynamic process during which cancer cells separate from a primary tumor, migrate through the vessel wall into the bloodstream, and extravasate at distant sites to form secondary colonies. During this process, circulating tumor cells are subjected to shear stress forces from blood flow, and in contact with plasma proteins and blood cells of the immune and hemostatic system, including platelets. Many studies have shown an association between high platelet count and cancer metastasis, suggesting that platelets may play an occult role in tumorigenesis. This mini-review summarizes recent and emerging discoveries of mechanisms by which cancer cells activate platelets and the role of activated platelets in promoting tumor growth and metastasis. Moreover, the review discusses how aspirin has the potential for being clinically used as an adjuvant in cancer therapy.
Assuntos
Antineoplásicos/uso terapêutico , Aspirina/uso terapêutico , Neoplasias , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Animais , Humanos , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Contagem de PlaquetasRESUMO
Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein.
Assuntos
Aspirina/administração & dosagem , Plaquetas/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Humanos , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores da Agregação Plaquetária/administração & dosagem , Resultado do TratamentoRESUMO
The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.
Assuntos
Plaquetas/metabolismo , Endotélio Vascular/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Modelos Cardiovasculares , Ativação Plaquetária , Animais , Velocidade do Fluxo Sanguíneo , Humanos , Microvasos/metabolismo , Microvasos/fisiopatologiaRESUMO
Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.
Assuntos
Reatores Biológicos , Plaquetas , Técnicas Analíticas Microfluídicas , Animais , Materiais Biomiméticos , Plaquetas/citologia , Plaquetas/fisiologia , Desenho de Equipamento , Humanos , Megacariócitos/citologia , Megacariócitos/fisiologia , Camundongos , Modelos Biológicos , Transfusão de Plaquetas , TrombopoeseRESUMO
All forms of chronic pulmonary hypertension (PH) are characterized by structural remodeling of the pulmonary artery (PA) media, a process previously attributed solely to changes in the phenotype of resident smooth muscle cells (SMC). However, recent experimental evidence in both systemic and pulmonary circulations suggests that other cell types, including circulating and local progenitors, contribute significantly to this process. The goal of this study was to determine if hypoxia-induced remodeling of distal PA (dPA) media involves the emergence of cells with phenotypic and functional characteristics distinct from those of resident dPA SMC and fibroblasts. In vivo, in contrast to the phenotypically uniform SMC composition of dPA media in control calves, the remodeled dPA media of neonatal calves with severe hypoxia-induced PH comprised cells exhibiting a distinct phenotype, including the expression of hematopoetic (CD45), leukocytic/monocytic (CD11b, CD14), progenitor (cKit), and motility-associated (S100A4) cell markers. Consistent with these in vivo observations, primary cell cultures isolated from dPA media of hypertensive calves yielded not only differentiated SMC, but also smaller, morphologically rhomboidal (thus termed here "R") cells that transiently expressed CD11b, constitutively expressed the mesenchymal cell marker type I procollagen, expressed high mRNA levels of progenitor cell markers cKit, CD34, CD73, as well as for inflammatory mediators, IL-6 and MCP-1, and, with time in culture, gained expression of a myofibroblast marker, alpha-SM-actin. R cells exhibited highly augmented proliferative, migratory, invasive, and potent promitogenic capabilities, which were due, at least in part, to the production of PDGFs, SDF-1/CXCL12, and S100A4. These data suggest that the cellular mechanisms of dPA remodeling include the emergence of cells with phenotypic and functional characteristics markedly distinct from those of resident dPA cells.
Assuntos
Movimento Celular , Hipóxia/patologia , Mitógenos/metabolismo , Artéria Pulmonar/patologia , Animais , Comunicação Autócrina , Biomarcadores/metabolismo , Bovinos , Proliferação de Células , Células Cultivadas , Quimiocina CXCL12/biossíntese , Meios de Cultura , Regulação da Expressão Gênica , Hipertensão Pulmonar/patologia , Mediadores da Inflamação/metabolismo , Comunicação Parácrina , Fenótipo , Fator de Crescimento Derivado de Plaquetas/biossíntese , Artéria Pulmonar/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/metabolismoRESUMO
Platelets, components of hemostasis, when present in excess (>400 K/µL, thrombocytosis) have also been associated with worse outcomes in lung, ovarian, breast, renal, and colorectal cancer patients. Associations between thrombocytosis and cancer outcomes have been made mostly from single-time-point studies, often at the time of diagnosis. Using laboratory data from the Department of Veterans Affairs (VA), we examined the potential benefits of using longitudinal platelet counts in improving patient prognosis predictions. Ten features (summary statistics and engineered features) were derived to describe the platelet counts of 10,000+ VA lung, prostate, and colon cancer patients and incorporated into an age-adjusted LASSO regression analysis to determine feature importance, and predict overall or relapse-free survival, which was compared to the previously used approach of monitoring for thrombocytosis near diagnosis (Postdiag AG400 model). Temporal features describing acute platelet count increases/decreases were found to be important in cancer survival and relapse-survival that helped stratify good and bad outcomes of cancer patient groups. Predictions of overall and relapse-free survival were improved by up to 30% compared to the Postdiag AG400 model. Our study indicates the association of temporally derived platelet count features with a patients' prognosis predictions.
Assuntos
Neoplasias do Colo/sangue , Neoplasias do Colo/mortalidade , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/mortalidade , Contagem de Plaquetas , Neoplasias da Próstata/sangue , Neoplasias da Próstata/mortalidade , Adulto , Idoso , Biomarcadores , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/terapia , Comorbidade , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Razão de Chances , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/terapia , Estudos RetrospectivosRESUMO
In this review, we discuss the interaction between cancer and markers of inflammation (such as levels of inflammatory cells and proteins) in the circulation, and the potential benefits of routinely monitoring these markers in peripheral blood measurement assays. Next, we discuss the prognostic value and limitations of using inflammatory markers such as neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios and C-reactive protein measurements. Furthermore, the review discusses the benefits of combining multiple types of measurements and longitudinal tracking to improve staging and prognosis prediction of patients with cancer, and the ability of novel in silico frameworks to leverage this high-dimensional data.
RESUMO
Platelets are anucleate cells in the blood at concentrations of 150,000 to 400,000 cells/µL and play a key role in hemostasis. Several studies have suggested that platelets contribute to cancer progression and cancer-associated thrombosis. In this review, we provide an overview of the biochemical and biophysical mechanisms by which platelets interact with cancer cells and review the evidence supporting a role for platelet-enhanced metastasis of cancer, and venous thromboembolism (VTE) in patients with cancer. We discuss the potential for and limitations of platelet counts to discriminate cancer disease burden and prognosis. Lastly, we consider more advanced diagnostic approaches to improve studies on the interaction between the hemostatic system and cancer cells.
RESUMO
The reaction dynamics of a complex mixture of cells and proteins, such as blood, in branched circulatory networks within the human microvasculature or extravascular therapeutic devices such as extracorporeal oxygenation machine (ECMO) remains ill-defined. In this report we utilize a multi-bypass microfluidics ladder network design with dimensions mimicking venules to study patterns of blood platelet aggregation and fibrin formation under complex shear. Complex blood fluid dynamics within multi-bypass networks under flow were modeled using COMSOL. Red blood cells and platelets were assumed to be non-interacting spherical particles transported by the bulk fluid flow, and convection of the activated coagulation factor II, thrombin, was assumed to be governed by mass transfer. This model served as the basis for predicting formation of local shear rate gradients, stagnation points and recirculation zones as dictated by the bypass geometry. Based on the insights from these models, we were able to predict the patterns of blood clot formation at specific locations in the device. Our experimental data was then used to adjust the model to account for the dynamical presence of thrombus formation in the biorheology of blood flow. The model predictions were then compared to results from experiments using recalcified whole human blood. Microfluidic devices were coated with the extracellular matrix protein, fibrillar collagen, and the initiator of the extrinsic pathway of coagulation, tissue factor. Blood was perfused through the devices at a flow rate of 2 µL/min, translating to physiologically relevant initial shear rates of 300 and 700 s-1 for main channels and bypasses, respectively. Using fluorescent and light microscopy, we observed distinct flow and thrombus formation patterns near channel intersections at bypass points, within recirculation zones and at stagnation points. Findings from this proof-of-principle ladder network model suggest a specific correlation between microvascular geometry and thrombus formation dynamics under shear. This model holds potential for use as an integrative approach to identify regions susceptible to intravascular thrombus formation within the microvasculature as well as extravascular devices such as ECMO.
RESUMO
In the contact activation pathway of the coagulation, zymogen factor XII (FXII) is converted to FXIIa, which triggers activation of FXI leading to the activation of FIX and subsequent thrombin generation and fibrin formation. Feedback activation of FXI by thrombin has been shown to promote thrombin generation in a FXII-independent manner and FXIIa can bypass FXI to directly activate FX and prothrombin in the presence of highly negatively charged molecules, such as long-chain polyphosphates (LC polyP). We sought to determine whether activation of FXII or FXI differentially regulate the physical biology of fibrin formation. Fibrin formation was initiated with tissue factor, ellagic acid (EA), or LC polyP in the presence of inhibitors of FXI and FXII. Our data demonstrated that inhibition of FXI decreased the rate of fibrin formation and fiber network density, and increased the fibrin network strength and rate of fibrinolysis when gelation was initiated via the contact activation pathway with EA. FXII inhibition decreased the fibrin formation and fibrin density, and increased the fibrinolysis rate only when fibrin formation was initiated via the contact activation pathway with LC polyP. Overall, we demonstrate that inhibition of FXI and FXII distinctly alter the biophysical properties of fibrin.