Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 16(12): 1321-1330, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199908

RESUMO

Maintenance of lipid asymmetry across the two leaflets of the plasma membrane (PM) bilayer is a ubiquitous feature of eukaryotic cells. Loss of this asymmetry has been widely associated with cell death. However, increasing evidence points to the physiological importance of non-apoptotic, transient changes in PM asymmetry. Such transient scrambling events are associated with a range of biological functions, including intercellular communication and intracellular signaling. Thus, regulation of interleaflet lipid distribution in the PM is a broadly important but underappreciated cellular process with key physiological and structural consequences. Here, we compile the mounting evidence revealing multifaceted, functional roles of PM asymmetry and transient loss thereof. We discuss the consequences of reversible asymmetry on PM structure, biophysical properties and interleaflet coupling. We argue that despite widespread recognition of broad aspects of membrane asymmetry, its importance in cell biology demands more in-depth investigation of its features, regulation, and physiological and pathological implications.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Esfingomielinas/metabolismo , Animais , Comunicação Celular , Membrana Celular/química , Colesterol/química , Eritrócitos/química , Eritrócitos/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mamíferos , Neurônios/química , Neurônios/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositóis/química , Fosfatidilserinas/química , Transdução de Sinais , Esfingomielinas/química
2.
Soft Matter ; 17(2): 288-297, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32451522

RESUMO

Lipid membranes are ubiquitous biological organizers, required for structural and functional compartmentalization of the cell and sub-cellular organelles. Membranes in living cells are compositionally complex, comprising hundreds of dynamically regulated, distinct lipid species. Cellular physiology requires tight regulation of these lipidomic profiles to achieve proper membrane functionality. While some general features of tissue- and organelle-specific lipid complements have been identified, less is known about detailed lipidomic variations caused by cell-intrinsic or extrinsic factors. Here, we use shotgun lipidomics to report detailed, comprehensive lipidomes of a variety of cultured and primary mammalian membrane preparations to identify trends and sources of variation. Unbiased principle component analysis (PCA) shows clear separation between cultured and primary cells, with primary erythrocytes, synaptic membranes, and other mammalian tissue lipidomes sharply diverging from all cultured cell lines and also from one other. Most broadly, cultured cell membrane preparations were distinguished by their paucity of polyunsaturated lipids. Cultured mammalian cell lines were comparatively similar to one another, although we detected clear, highly reproducible lipidomic signatures of individual cell lines and plasma membrane (PM) isolations thereof. These measurements begin to establish a comprehensive lipidomic atlas of mammalian cells and tissues, identifying some major sources of variation. These observations will allow investigation of the regulation and functional significance of mammalian lipidomes in various contexts.


Assuntos
Lipidômica , Lipídeos , Animais , Linhagem da Célula , Membrana Celular , Metabolismo dos Lipídeos , Membranas
3.
Nat Commun ; 11(1): 1339, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165635

RESUMO

Proper membrane physiology requires maintenance of biophysical properties, which must be buffered from external perturbations. While homeostatic adaptation of membrane fluidity to temperature variation is a ubiquitous feature of ectothermic organisms, such responsive membrane adaptation to external inputs has not been directly observed in mammals. Here, we report that challenging mammalian membranes by dietary lipids leads to robust lipidomic remodeling to preserve membrane physical properties. Specifically, exogenous polyunsaturated fatty acids are rapidly incorporated into membrane lipids, inducing a reduction in membrane packing. These effects are rapidly compensated both in culture and in vivo by lipidome-wide remodeling, most notably upregulation of saturated lipids and cholesterol, resulting in recovery of membrane packing and permeability. Abrogation of this response results in cytotoxicity when membrane homeostasis is challenged by dietary lipids. These results reveal an essential mammalian mechanism for membrane homeostasis wherein lipidome remodeling in response to dietary lipid inputs preserves functional membrane phenotypes.


Assuntos
Membrana Celular/química , Gorduras na Dieta/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Biofísica , Linhagem Celular , Membrana Celular/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Homeostase , Humanos , Lipidômica , Fluidez de Membrana , Lipídeos de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA